

Optics for LHC Commissioning and Operation with Pb Ions

John Jowett

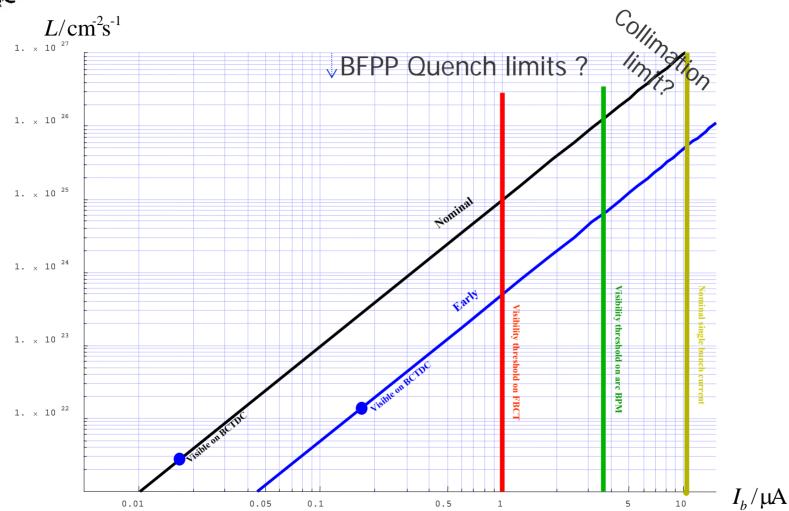
Nominal scheme parameters (Design Report)

		Injection	Collision		
Beam parameters					
Lead ion energy	[GeV]	36900	574000		
Lead ion energy/nucleon	[GeV]	177.4	2759.		
Relativistic "gamma" factor		190.5	2963.5		
Number of ions per bunch		7.×	$< 10^{7}$		
Number of bunches		5	92		
Transverse normalized emittance	$[\mu m]$	1.4 ^{<i>a</i>}	1.5		
Peak RF voltage (400 MHz system)	[MV]	8	16		
Synchrotron frequency	[Hz]	63.7	23.0		
RF bucket half-height		1.04×10^{-3}	$3.56 imes10^{-4}$		
Longitudinal emittance (4σ)	[eV s/charge]	0.7	2.5^{b}		
RF bucket filling factor		0.472	0.316		
RMS bunch length ^c	[cm]	9.97	7.94		
Circulating beam current	[mA]	6.12			
Stored energy per beam	[MJ]	0.245	3.81		
Twiss function $\beta_x = \beta_y = \beta^*$ at IP2	[m]	10.0	0.5		
RMS beam size at IP2	μ m	280.6	15.9		
Geometric luminosity reduction factor F^d		-	1		
Peak luminosity at IP2	$[\mathrm{cm}^{-2}\mathrm{sec}^{-1}]$	-	$1. \times 10^{27}$		

Nominal scheme, lifetime parameters (Design Report)

2 experiments

		Injection	Collision		
Interaction data					
Total cross section	[mb]	-	514000		
Beam current lifetime (due to beam-beam) ^{a}	[h]	-	11.2		
Intra Beam	Scattering				
RMS beam size in arc	[mm]	1.19	0.3		
RMS energy spread $\delta E/E_0$	$[10^{-4}]$	3.9	1.10		
RMS bunch length	[cm]	9.97	7.94		
Longitudinal emittance growth time	[hour]	3	7.7		
Horizontal emittance growth time ^b	[hour] Radiation	6.5	13		
Since the LHC Design Report					
	[W]	3.5×10^{-14}	2.0×10^{-9}		
was published, it has become	$[Wm^{-1}]$	8×10^{-8}	0.005		
clear that we will have 3	[W]	1.4×10^{-3}	83.9		
clear that we will have 5	[eV]	19.2	1.12×10^6		
experiments (ALICE, ATLAS,	[eV]	$7.3 imes 10^{-4}$	2.77		
	[hour]	23749	6.3		
CMS) taking data.	[hour]	47498	12.6		
Variation of longitudinal damping partition number ^c		230	230		
Initial beam and luminosity lifetimes					
Beam current lifetime (due to residual gas scattering) d	[hour]	?	?		
Beam current lifetime (beam-beam, residual gas)	[hour]	-	< 11.2		
Luminosity lifetime ^e	[hour]	-	< 5.6		

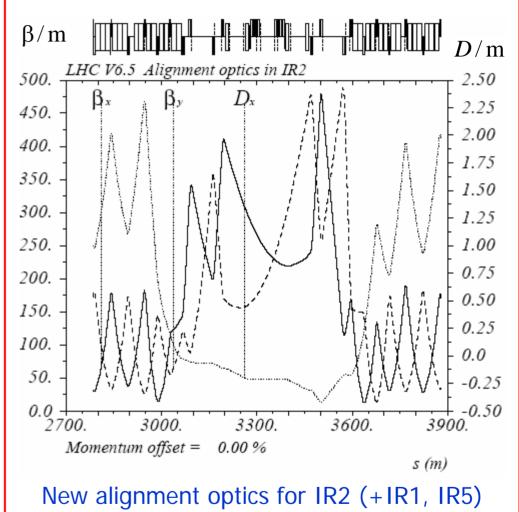

Early scheme Parameters (Design Report) 2 experiments

		Injection	Collision		
Beam parameters					
Number of bunches			62		
Circulating beam current	[mA]		0.641		
Stored energy per beam	[MJ]	0.0248	0.386		
Twiss function $\beta_x = \beta_y = \beta^*$ at IP2	[m]	10.0	1.0		
RMS beam size at IP2 ^e	[µm]	280.6	22.5		
Peak luminosity at IP2	$[\mathrm{cm}^{-2}\mathrm{sec}^{-1}]$	-	$5.4 imes 10^{25}$		
Interactio	on data				
Beam current lifetime (due to beam-beam) ^{a}	[h]	-	21.8		
Synchrotron	Radiation				
Power loss per metre in main bends	$[Wm^{-1}]$	8.5×10^{-9}	5.0×10^{-4}		
Synchrotron radiation power per ring [W]		1.5×10^{-4}	8.8		
Initial beam and luminosity lifetimes					
Beam current lifetime (beam-beam, residual gas)	[hour]	-	< 21.8		
Luminosity lifetime (as in Table 21.3)	[hour]	-	< 11.2		

Only show parameters that are different from nominal scheme

Operational Parameter Space for Pb Ions

Thresholds for visibility on BPMs and BCTs.


- Same *geometrical* transverse beam size and emittance
 - Optics, dynamic aperture, mechanical acceptance, etc. similar to protons.
- Injection and ramp done with exactly the same optics, orbits, corrections, etc. as for protons
 - Should shorten ion commissioning time considerably!
- Colliding in ATLAS, CMS \Rightarrow same squeeze as protons
- Leave IR8 in injection configuration
- Main difference is that IR2 is squeezed to $\beta^* = 2., 1., 0.5 \text{ m}$
 - May or may not be operationally convenient to commission the ion optics first with low-intensity protons.
- Crossing angle at IP2 (1,5?) may be small (includes ALICE muon spectrometer, details in Design Report)
 - Aperture requirements somewhat relaxed w.r.t. protons
 - Operational time for polarity reversals

Alignment of IR2 Quadrupole Triplets

Procedure

- K-modulation to find quadrupole centres w.r.t. BPMs
- Alignment with special optics, triplet quads off
- Only possible with Beam 2
 - Phase advance injection kicker to TDI
- May not be necessary in first year
 - Can be done with protons
 - Consider scheduling together with other IRs?

Plan for Commissioning LHC Rings with Lead Ions (1)

Assume that protons can be collided

- Injection, ramp, squeeze (where applicable) are set up
- Re-commission injection and first turns with single ion "pilot" bunch (close to nominal intensity)
 - Adjust BST
 - Energy matching to different SPS cycle, each ring
 - Should go quickly (magnetic reproducibility...)
 - Deal with any difference of geometric beam size from protons (collimator settings, etc.)
- Set up RF and capture ("few shifts"), instrumentation

Plan for Commissioning LHC Rings with Lead Ions (2)

Re-commission ramp

- Should also go quickly (magnetic reproducibility again)
- Deal with any difference of geometric beam size from protons (collimator settings, etc.)
- Commission squeeze of IP2 (if applicable)
 - Including crossing angle with ALICE spectrometer bump
 - (Alignment of IR2 triplet quadrupoles?)
 - Could take a few days (see experience with IP1 and IP5)
- Collide Pb-Pb
 - Re-optimise collimation (how?), measurements, etc.

Need to review time requirements with proton experience. Provide > 4 weeks of physics with Early Scheme for ALICE, ATLAS, CMS.

Don't forget MD time (\rightarrow Nominal Scheme) with Pb ions

5

÷.

Optical Parameters at the IPs (Nominal)

IPopticsTable["CollisionIons", "LHCB1"]

//NumberForm=

	IP1	IP2	IP5	IP8	IP1.L1
β_x/m	0.55	0.5	0.55	10.	0.55
β _y /m	0.55	0.5	0.55	10.	0.55
x_c/mm	1.1×10^{-9}	$-3.59 imes 10^{-9}$	0.5	$-3.18 imes 10^{-9}$	$1.1 imes 10^{-9}$
y_c/mm	-0.5	$5.77 imes10^{-9}$	$2.08 imes 10^{-9}$	-0.5	-0.5
$p_{xc}/\mu rad$	$-2.95 imes 10^{-6}$	2.63×10^{-6}	142.	-210.	$-2.95 imes 10^{-6}$
$p_{yc}/\mu rad$	143.	-10.	$-7.9 imes 10^{-6}$	-1.81×10^{-7}	143.

IPopticsTable["CollisionIons", "LHCB2"]

//NumberForm=

	IP1	IP2	IP5	IP8	IP1.L1
β_x/m	0.55	0.5	0.55	10.	0.55
β _y /m	0.55	0.5	0.55	10.	0.55
\mathbf{x}_{c}/mm	4.11×10^{-9}	$3.94 imes 10^{-9}$	0.5	-2.43×10^{-8}	$4.11 imes 10^{-9}$
y_c/mm	-0.5	$-6.01 imes10^{-9}$	$-2.72 imes 10^{-9}$	0.5	-0.5
$\mathbf{p}_{\mathbf{xc}}/\mu\mathbf{rad}$	$-2.79 imes 10^{-6}$	$5.5 imes 10^{-6}$	-142.	210.	$-2.79 imes10^{-6}$
$p_{yc}/\mu rad$	-142.	10.	-0.000107	$-2.69 imes 10^{-6}$	-142.

Optical Parameters at the IPs (Early)

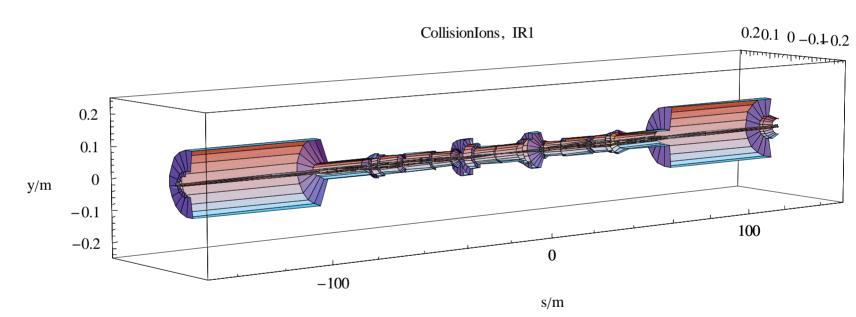
IPopticsTable["EarlyCollisionIons", "LHCB1"]

/NumberForm=

	IP1	IP2	IP5	IP8	IP1.L1
β_x/m	2.	1.	2.	10.	2.
β _y /m	2.	1.	2.	10.	2.
x_c/mm	-1.11×10^{-9}	$2.29 imes 10^{-9}$	0.322	$1.78 imes 10^{-9}$	$3.08 imes 10^{-9}$
y_c/mm	-0.322	$2.78 imes10^{-9}$	3.61×10^{-10}	-2.	-0.322
$\mathbf{p}_{\mathbf{xc}}/\mu\mathbf{rad}$	$2.37 imes 10^{-6}$	-1.83×10^{-6}	92.	-170.	$1.86 imes 10^{-6}$
$p_{yc}/\mu rad$	92.	-2.13×10^{-6}	$-1.98 imes10^{-6}$	$8.67 imes 10^{-7}$	92.

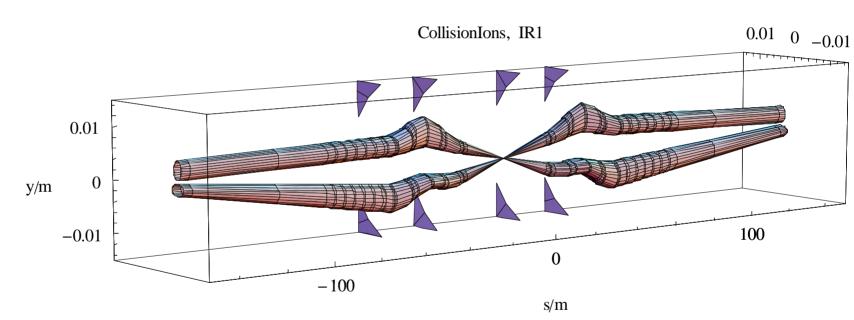
IPopticsTable["EarlyCollisionIons", "LHCB2"]

/NumberForm=


	IP1	IP2	IP5	IP8	IP1.L1
β_x/m	2.	1.	2.	10.	2.
β _y /m	2.	1.	2.	10.	2.
x_c/mm	3.94×10^{-9}	$\texttt{3.09}\times\texttt{10}^{-9}$	0.322	$-8.36 imes 10^{-9}$	$3.94 imes 10^{-9}$
y_c/mm	-0.322	$-4.5 imes10^{-9}$	$-5.35 imes 10^{-9}$	2.	-0.322
$\mathbf{p}_{\mathbf{xc}}/\mu\mathbf{rad}$	$-1.74 imes10^{-6}$	$1.11 imes 10^{-8}$	-92.	170.	$-1.74 imes10^{-6}$
$p_{yc}/\mu rad$	-92.	$-3.55 imes10^{-7}$	-1.07×10^{-6}	$-1.13 imes10^{-6}$	-92.

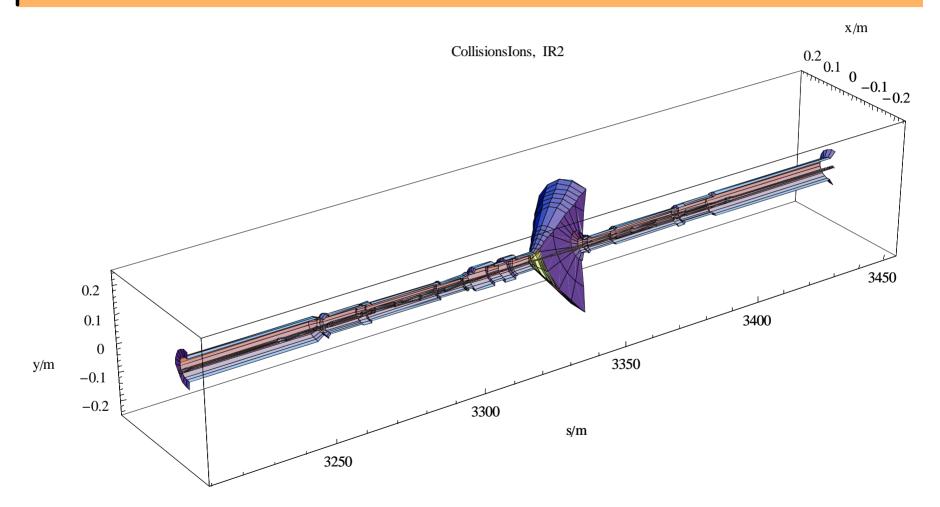
Beams crossing inside LHC aperture, Nominal, IR1

IRcrossingPlot3D["CollisionIons", "IR1", 2, 0.25]

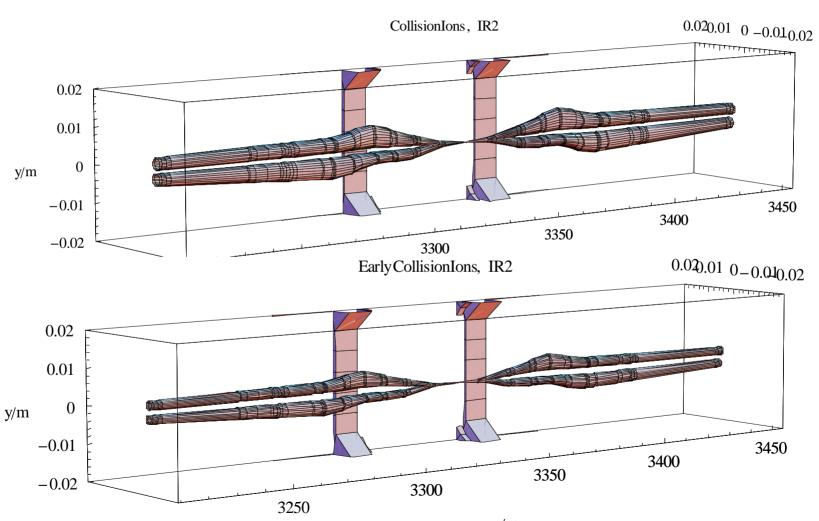


Beams crossing, Nominal, IR1, closer view (2 σ beam)

IRcrossingPlot3D["CollisionIons", "IR1", 2, 0.015]

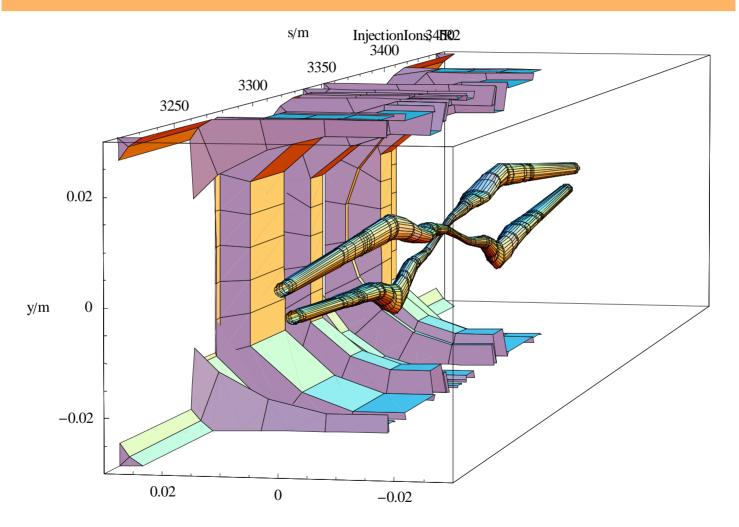


Beams crossing inside LHC aperture, Nominal, IR2


IRcrossingPlot3D["CollisionsIons", "IR2", 2, 0.25]

Beams crossing, Nominal+EARLY, IR2 (2σ beam)

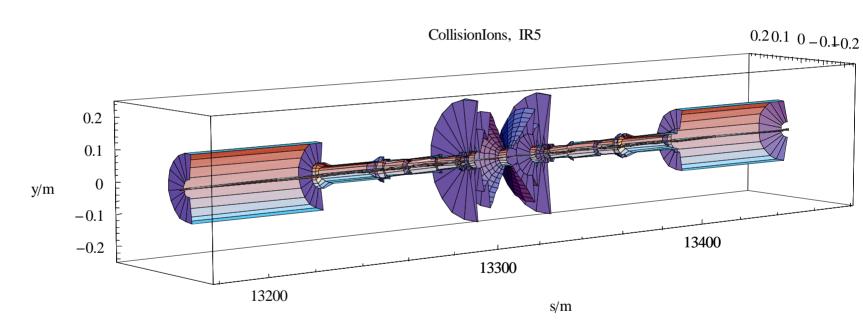
IRcrossingPlot3D["CollisionIons", "IR2", 2, 0.02]



x/m

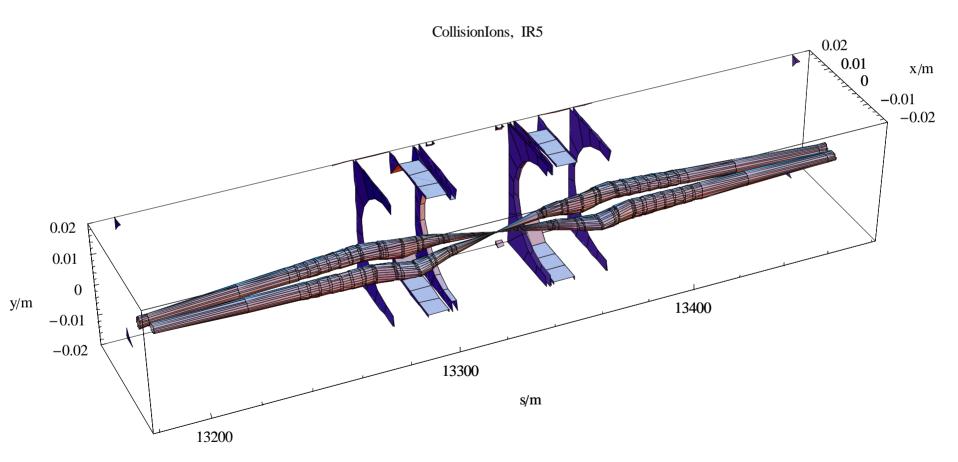
Beams crossing, Injection, IR2 (2σ beam)

IRcrossingPlot3D["InjectionIons", "IR2", 2, 0.03, ViewPoint -> {-3.308, -0.644, 0.312}]

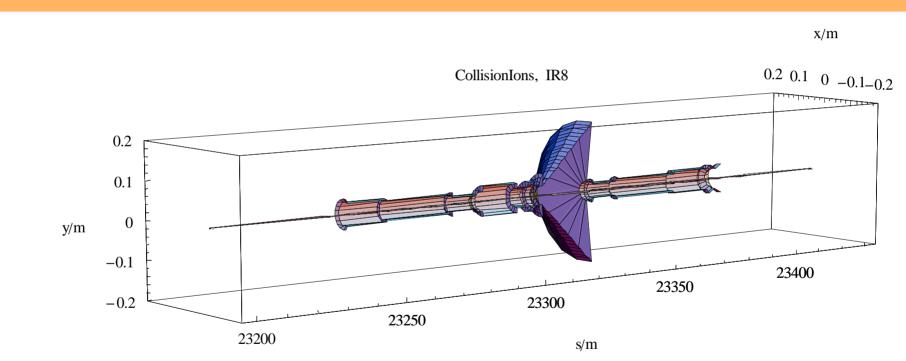


Beams crossing inside LHC aperture, Nominal, IR5

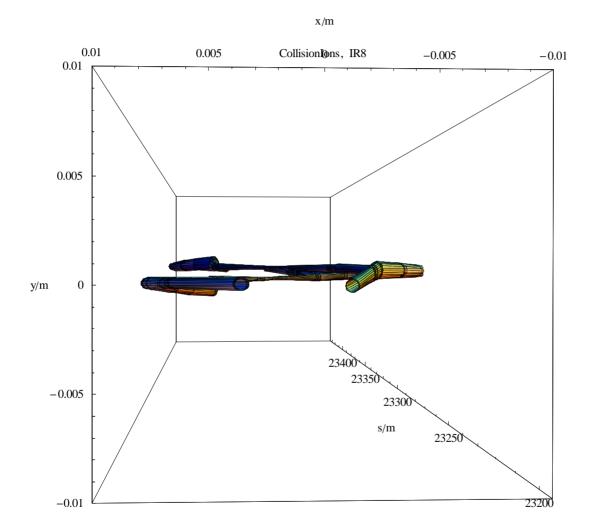
IRcrossingPlot3D["CollisionIons", "IR5", 2, 0.25]



Beams crossing, Nominal, IR5, closer view (2σ beam)


IRcrossingPlot3D["CollisionIons", "IR5", 2, 0.02, ViewPoint -> {-1.233, -2.695, 2.165}]

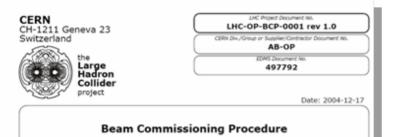
Beams crossing inside LHC aperture, Nominal, IR8


IRcrossingPlot3D["CollisionIons", "IR8", 2, 0.2]

Beams crossing, Nominal, IR8, closer view (2σ beam)

IRcrossingPlot3D["CollisionIons", "IR8", 2, 0.01, ViewPoint -> {-0.999, 0.046, 0.011}]

Separation at IP8, similar to injection (but smaller beams)



Minimum Pre-requisites for switching from p-p to Pb-Pb

- Pb-ion injection should be ready
 - Nominally in Spring 2008
- Injection, ramp and collisions work with protons
 - Squeeze is not strictly necessary
 - E.g. conditions of the Pilot Run ...

Optical Conditions in Proton Pilot Run

OVERALL STRATEGY FOR EARLY LUMINOSITY OPERATION WITH PROTONS

Initial Pilot Run conditions with Early Ion beam would give Pb-Pb luminosity of:

$$L = (\text{few}) \times 10^{24} \text{ cm}^{-2} \text{s}^{-1}$$

ALICE will be taking head-on collisions.

Minimum change to LHC configuration.

Beam energy (TeV)	6.0, 6.5 or 7.0	6.0, 6.5 or 7.0	6.0, 6.5 or 7.0
Number of bunches (per beam)	43	43	156
β* in IP 1, 2, 5, 8 (m)	18,10,18,10	2,10,2,10	2,10,2,10
Crossing Angle (µR)	0	0	0
Transverse emittance (µm)	3.75	3.75	3.75
Bunch spacing (µs)	2.025	2.025	0.525
Bunch Intensity	1 10 ¹⁰	4 10 ¹⁰	4 10 ¹⁰
Luminosity in IP 1 & 5 (cm ⁻² s ⁻¹)	~ 3 10 ²⁸	~ 5 10 ³⁰	~ 2 10 ³¹
Luminosity in IP 2 (cm ⁻² s ⁻¹)	~ 6 10 ²⁸	~ 1 10 ³⁰	~ 4 10 ³⁰