Latest on LHC heavy ion collimation

Beam1 @ nominal collision

Losses confined to IR7 dispersion suppressor, cells 9 & 11

Few small losses in IR2 (mainly blocked by tertiaries)

Beam2 @ nominal collision

Beam1 @ injection

N_{turn}

Beam 1 Particle losses in IR7, t=12min

Beam 2 @ injection

Pb²⁰⁸

Beam 2 @ injection Particle losses in IR7, t=12min

Status of LHC heavy ion collimation

Aperture sensitivity :

nominal

+1 mm

Beam 2 Particle losses in IR7 DS, τ=12min

Beam 2 Particle losses in IR7 DS (ap +), τ=12min

BLMs coverage:

Philosophy :

Adding 1mm to aperture (all elements) causes a shift in the beam loss peaks by up to 2m

BLMs coverage of IR7: 3 patches available in cells 8,9,11 (dipoles) X 8 channels (max) X 2 BLMs

2 channels available on quad patches (regions 8,9,10,11,13)

Need partial coverage of cell 9 and 13, full coverage of cell 11

Beam 1 @ collision Particle losses in IR7, τ=12min

What next ?

High priority:

#1 : Produce list of locations for BLM installation in IR7/IR3

2 : Study sensitivity to orbit oscillations using same perturbation model as used by proton collimation group (GRD's talk at last Chamonix)

Suggestions from CWG meeting:

Study loss distributions (uniform loss assumption *vs* losses concentrated on a single collimator jaw). Role of skew collimators?

Sample MAD optics every 10cm to get more precise loss locations.

Include a $\Delta p/p$ in initial distribution.

Study collimation inefficiency for thinner collimators.

Specific issues:

- Code benchmarking for protons (ICOSIM/Sixtrack, ICOSIM/SPS data)
- Improve physical model of particle/collimator interactions