

Optics with QFO205 maximum current limited to 330 A

C. Carli, D. Manglunki, M. Martini, S. Maury, R. Steerenberg

Contents

- **I**-LHC TT2 LOW-β OPTICS QUADRUPOLE LAYOUT
- □ I-LHC TT2 LOW- β OPTICS QUADRUPOLE OPTICS
- □ I-LHC TT2 LOW- β OPTICS MEASUREMENT RESULTS
- **I**-LHC TT2 LOW-β OPTICS QUADRUPOLE LAYOUT (REVERSED DIRECTION)
- □ I-LHC TT2 LOW-β OPTICS QUADRUPOLE OPTICS (REVERSED DIRECTION)

TT2 low- β insertion

M. Martini

I-LHC TT2 LOW- β OPTICS QUADRUPOLE LAYOUT

Quadrupole	Туре	Proton optics 25. (26 GeV/c)	Ion optics 5.88 GeV/u (26 GeV/c eq. prot)			
QF0105	Q101 (0.645 m)		max 550 A	507.4 A		
QDE120	Q120B(1.2 m)	(max 265 A	(-)264.8 A		
QFO135	Q120B(1.2 m)	New matching with	213.7 A	max 220 A	173.0 A	
QDE150	Q120B(1.2 m)	1010203 _{max} =330 A	-)151.8 A	max 250 A	(-)111.5 A	
QDE163 (1,2)	Q50A (0.5 m)	zero current for proton	max 300 A	(-) 277.6 A		
QFO165	Q120B(1.2 m)		max 250 A	235.6 A		
QDE180	Q120B(1.2 m)	(max 250 A	(-)187.0 A		
QFO205	Q120B(1.2 m)		max 330 A	<mark>⊿ 329.8 A</mark>		
QDE207 (1,2)	Q120B(1.2 m)	zero current for proton	max 450 A	(-)261.5 A		
QDE210 ⁽²⁾	Q82 (0.82 m)	same as QDE220.S: (max 400 A	(-)144.3 A		
QDE213 (1,2)	Q80 (0.8 m)	zero current for proton	max 400 A	(-) <mark>0.0 A</mark>		
QFO215 ⁽²⁾	Q120B(1.2 m)	same as QFO225.S:	max 500 A	264.9 A		
QDE217 (1,2)	Q80 (0.8 m)	zero current for proton	max ⁄300 A	(-)270.3 A		
QDE220.S ⁽³⁾	Q82 (0.82 m)		-)219.3 A	max 250 A	(-)143.9 A	
QF0225.S	Q80 (0.8 m)	Initially 437 A with $IQFO205_{max} = 500 \text{ A}$	241.2 A	max 330 A	164.4 A	
QF0375	Q80 (0.8 m)	max	255.0 A	max 330 A	130.9 A	

(1) new quad, (2) new supply, (3) 2 quads out of 13 are of type QFS

I-LHC TT2 LOW- β OPTICS QUADRUPOLE LAYOUT

Quadrupole	Gradient	Integrated	gradient	Converter current		
QF0105	0.19499 m ⁻²	max 13.920 T	10.9003 T	max 550 A	507.4 A	
QDE120	-0.13090 m ⁻²	max 23.200 T	-13.6141 T	max 265 A	(-)264.8 A	
QFO135	0.08565 m ⁻²	max 23.200 T	8.9078 T	max 220 A	173.0 A	
QDE150	-0.05506 m ⁻²	max 23.200 T	-5.7263 T	max 250 A	(-)111.5 A	
QDE163 (1,2)	-0.12113 m ⁻²	max 5.572 T	-5.2491 T	max 300 A	(-)277.6 A	
QFO165	0.11666 m ⁻²	max 23.200 T	12.1334 T	max 250 A	235.6 A	
QDE180	-0.09261 m ⁻²	max 23.200 T	-9.6317 T	max 250 A	(-)187.0 A	
QF0205	0.16150 m ⁻²	max 23.200 T	16.7966 T	max 330 A	329.8 A	
QDE207 (1,2)	-0.12931 m ⁻²	max 23.200 T	-13.4482 T	max 450 A	(-)261.5 A	
QDE210 ⁽²⁾	-0.10995 m ⁻²	max 16.662 T	-5.1453 T	max 400 A	(-)144.3 A	
QDE213 ^(1,2)	0.00000 m ⁻²	max 15.640 T	0.0000 T	max 400 A	(-) <mark>0.0 A</mark>	
QF0215 ⁽²⁾	0.19884 m ⁻²	max 23.200 T	13.6175 T	max 500 A	264.9 A	
QDE217 (1,2)	-0.20666 m ⁻²	max 15.640 T	-9.4355 T	max 300 A	(-)270.3 A	
QDE220.S ⁽³⁾	-0.10958 m ⁻²	max 16.662 T	-5.1284 T	max 250 A	(-)143.9 A	
QF0225.S	0.12599 m ⁻²	max 15.640 T	5.7525 T	max 330 A	164.4 A	
QF0375	0.10019 m ⁻²	max 15.640 T	4.5743 T	max 330 A	130.9 A	

(1) new quad, (2) new supply, (3) 2 quads out of 13 are of type QFS

1TT2 P Linea	b optics r lattic	- V 5 2 e funct	2006 cions.	TWISS		line	e: TT2				"MAD" Ve range: #	ersion: #S/#E	8.51/15	Run: 2	7/10/06	14.4	6.31
Delta	(p)/p:	0.00)0000	symm: F		supe	er: 1									page	1
pos. no.	ELEMENT element name	SEQUENO occ. no.	E dist [m]	I I betax I [m]	I alfax [1]	HORI mux [2pi]	Z O N T x(co) [mm]	A L px(co) [.001]	Dx 1 [m]	I Dpx I [1] I	betay [m]	alfay [1]	VERT muy [2pi]	ICAL y(co) [mm]	py(co) [.001]	Dy [m]	Dpy [1]
begin 58 70 118 120 126 128 136 138 end	TT2 MTV201 STRN MSG257 MSG258 MSG267 MSG268 MSG277 MSG278 TT2	1 1 1 1 1 1 1 1	0.000 55.000 69.589 162.011 162.596 180.471 181.056 198.931 199.516 304.695	26.420 34.169 8.855 15.306 14.176 11.003 10.402 15.755 15.070 32.277	-2.350 -1.022 -0.097 1.004 0.927 0.548 0.479 0.610 0.559 0.659	$\begin{array}{c} 0.\ 000\\ 0.\ 272\\ 0.\ 441\\ 1.\ 212\\ 1.\ 218\\ 1.\ 389\\ 1.\ 398\\ 1.\ 563\\ 1.\ 569\\ 2.\ 493 \end{array}$	$\begin{array}{c} 0.\ 0000\\ 0.\ 0000\\ 0.\ 0000\\ 0.\ 0000\\ 0.\ 0000\\ 0.\ 0000\\ 0.\ 0000\\ 0.\ 0000\\ 0.\ 0000\\ 0.\ 0000\\ 0.\ 0000\\ 0.\ 0000\\ 0.\ 0000\\ 0.\ 0000\\ \end{array}$	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	3.630 2.351 -1.367 2.548 2.368 -0.688 -0.814 -3.286 -3.241 -3.777	0.400 -0.058 -0.256 -0.307 -0.307 -0.215 -0.215 0.077 0.077 -0.017	5.720 20.958 8.061 43.115 45.443 34.577 36.232 27.962 29.531 17.530	0.310 1.911 -0.130 -1.957 -2.022 -1.390 -1.440 -1.312 -1.369 -0.605	$\begin{array}{c} 0.\ 000\\ 0.\ 476\\ 0.\ 674\\ 1.\ 389\\ 1.\ 391\\ 1.\ 493\\ 1.\ 496\\ 1.\ 630\\ 1.\ 633\\ 2.\ 312 \end{array}$	$\begin{array}{c} 0.\ 0000\\ 0.\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 0.\ 000\ 0.\ 000\\ 0.\ 000\ 0.\ 000\ 0.\ 000\ 0.\ 000\ 0.\ 000\ 0.\ 000\ 0.\ 000\ 0.\ 000\ 0.\ 000\ 0.\ 000\ 0.\ 000\ 0.\ 000\ 0.\ 000\ 0.\ 000\ 0.\ 00\ 0.\ 000\ 0.\ 000\ 0.\ 000\ 0.\ 000\ 0.\ 00\ 0.\ 00\ 0.\ 00\ 0.\ 00\ 0.\ 00\ 0.\ 00\ 0.\ 00\ 0.\ 00\ 0.\ 00\ 0.\ 00\ 0.\ 0\ 0.\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\$	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-0.480 0.733 0.597 0.325 0.354 1.042 1.081 1.212 1.241 -0.257	0.030 -0.030 -0.025 0.049 0.049 0.067 0.067 0.050 0.050 0.050
total delta	length (s)	=	304.69 0.00	5400 0000 mm	mux dmuz beta Dx (1 Dx (1	с ах (mах) nах) :.m.s.)	= = = = =	2 -3 71 6 3	. 492803 . 243102 . 317244 . 096250 . 609330		muy dmuy betay Dy(maz Dy(r.m	(max) <) n.s.)	= = = = =	2.312 -2.706 55.633 1.298 0.698	185 828 769 974 078		
						- "lo	w-β″ a	at str	<mark>ipper</mark>								

TT2 "low- β " optics with IQFO205_{max}=330 A instead of 437 A (power converter limitation)

I-LHC TT2 LOW- β OPTICS QUADRUPOLE OPTICS

M. Martini

I-LHC TT2 LOW- β OPTICS QUADRUPOLE OPTICS

M. Martini

Name	Status	CCV	AQN	Unit
F16.QF0105	On	507.40	507.44	A
F16.BHZ117	On	211.30	211.39	A
F16.QDE120	On	264.80	265.05	A
F16.BVT123	On	275.95	276.09	A
F16.QF0135	On	173.00	173.16	A
F16.BHZ147	On	180.63	180.82	A
F16.QDE150	On	111.50	111.53	A
F16.QDE163	On	277.60	277.54	A
F16.QF0165	On	235.60	235.86	A
F16.BHZ167	On	155.05	155.18	A
F16.BVT173	On	277.00	277.07	A
F16.QDE180	On	187.00	187.19	A
F16.QF0205	On	329.00	329.09	A
F16.QDE207	On	261.50	261.46	A
F16.QDE210	On	144.30	144.25	A
F16.QDE213	On	0.00	-0.03	A
F16.QF0215	On	264.90	264.85	A
F16.QDE217	On	270.30	270.26	A
F16.QDE220S	On	143.90	144.48	A
F16.QF0225S	On	164.40	164.79	A
F16.BTI247	On	5.00	4.02	A
F16.BTI247FTA	On	0.00	4.02	A
F16.BHZ327	NOTCON	0.00	0.00	A
F16.BHZ327ATP	NOTCON	0.00	0.00	A
F16.DHZ337	On	10.50	10.49	A
F16.DVT353	On	0.35	0.36	A
F16.QF0375	On	130.90	133.39	A
F16.BHZ377	On	0.00	0.00	A
F16.BHZ377FTS	On	317.54	0.00	A
F16.SNP208	On	8.00	0.00	A

TT2 magnet currents – Ion beam on dump D3

I-LHC TT2 LOW- β OPTICS MEASUREMENT RESULTS

TT2 SEM-fil profiles with IQF0205=330 A

M. Martini

I-LHC TT2 LOW- β OPTICS MEASUREMENT RESULTS

TT2 SEM-fil profiles with IQF0205=330 A

M. Martini

TT2 low- β insertion: Reverse direction for tracking back study

M. Martini

I-LHC TT2 LOW- β OPTICS QUADRUPOLE OPTICS (REVERSED)

1TT2 Pb optics - V5 2 Linear lattice funct Delta(n)/n: 0.00	2006 tions. TWISS 10000 symm.F	line: TT2BA super: 1	CKT	"MAD" Version: 8.51/15 range: MS6257/ENDTT2A	Run: 27/10/06	16.02.35
ELEMENT SEQUENO pos. element occ. no. name no.	CE I dist I betax [m] I [m]	HORIZONT alfax mux x(co) [1] [2pi] [mm]	AL I px(co) Dx Dpx I [.001] [m] [1] I	VERT betay alfay muy [m] [1] [2pi]	'ICAL y(co) py(co) [mm] [.001]	Dy Dpy [m] [1]
44 MSG257 1 92 STRN 1 158 POINTR 1 162 ENDTT2A 1	0.000 19.900 92.423 6.723 162.011 25.050 162.011 25.050	-1.540 0.000 0.0000 0.237 0.740 0.0000 2.550 1.169 0.0000 2.550 1.169 0.0000	0.000 2.548 0.307 0.000 -1.363 0.256 0.000 3.623-0.399 0.000 3.623-0.399	$ \begin{smallmatrix} 60.750 & 2.800 & 0.000 \\ 5.855 & 0.206 & 0.707 \\ 6.656 & -0.697 & 1.416 \\ 6.656 & -0.697 & 1.416 \end{smallmatrix} $	0.0000 0.000 0.0000 0.000 0.0000 0.000 - 0.0000 0.000 -	0.325-0.049 0.592 0.025 -0.477-0.030 -0.477-0.030
total length = delta(s) =	162.011400 0.000000 mm	mux = dmux = betax(max) = Dx(max) = Dx(r.m.s.) =	1.169478 -2.021011 95.401279 6.090621 4.035069	muy = dmuy = betay(max) = Dy(max) = Dy(r.m.s.) = T	1.416434 -1.086701 75.687713 1.220557 0.592776	
		 (foil scatter	m track back ring ignored)			

TT2 low-β optics with IQFO205=330 A: Tracking back using SEM-fil data

I-LHC TT2 LOW- β OPTICS QUADRUPOLE OPTICS (REVERSED)

TT2 "low-β" optics with IQFO205=330 A: Tracking back using SEM-fil data M. Martini 27 October 2006

I-LHC TT2 LOW-β OPTICS QUADRUPOLE OPTICS (REVERSED)

TT2 "low-β" optics with IQFO205=330 A: Tracking back using SEM-fil data M. Martini 27 October 2006