Longitudinal Painting for a PSB H-Injection

C. Carli

- H- injection at other places around the world
- Basic facts and considerations for Linac 4 and PSB
 - Bunching factor and d(Bp)/dt
 - Painting and finite dispersion at PSB injection
 - Effect of d(Bp)/dt energy of "synchronous particle"
- Schemes investigated:
 - Three energy slices
 - Painting with fast sinusoidal energy modulation
 - Painting with slow sinusoidal energy modulation
 - Triangular energy modulation
- Energy modulation
- Summary and Outlook

Acknowledgements:

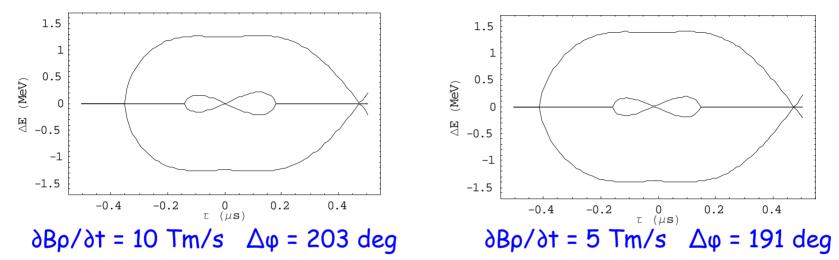
Based on many discussions with R. Garoby, Frank, Giulia, Alessandra, Michel ...

H- injection at other places around the world

Collect information to avoid "re-inventing the wheel" !

- PDAC:
 - Injection lasts several (~9) synchrotron revolutions,
 - Synchrotron motion used for azimuthally smoothing,
 - Not applicable for PSB case (no way to inject over several synchroton periods).
- SNS:
 - Rather awkward longitudinal distributions in some papers (on transverse painting), but relatively smooth bunch shape,
 - Only $\frac{1}{4}$ of a synchrotron period for bunch shortening:
 - "Funny" bunch shape, but beam kept only very shortly (compared to pseudoadiabatic capture).
 - Though about a "energy spreader" cavity !.
- J-PARC:
 - First glance similarities with H- injection into the PSB (Injection energy, ...),
- Lasts several synchrotron oscillations (many turns, high RF voltage, harm.) !! Conclusion:
- H- injection into PSB: somehow unique case for painting:
 - No way to profit from synchrotron motion for longitudinal painting.

Basic Facts and Considerations



- Longitudinal acceptance, emittance (cf F. Pedersen):
 - Aim: Favorable (large) bunching factor for "small" tune spread
 - Acceleration with full bucket and maximum RF voltage (i.e. large emittance):
 - For a given emittance: best bunching factor with acceptance just sufficient for emittance
 - Larger emittance (and RF voltage) results in smaller $\phi_{s},$ larger bunching factor and smaller tune spread
 - Bdot a compromise between bunching factor and time spent at low energy:
 - Small Bdot -> smaller tune spread, but long time at low energy,
 - Large Bdot -> larger tune spread during a shorter time.
- ∂Bp/∂t at injection:
 - Present situation (protons injected at 50 MeV):
 - Injection on ramp with $\partial B\rho/\partial t = 4.0 \text{ Tm/s}$,
 - Passage at 160 MeV with $\partial Bp/\partial t = 10 \text{ Tm/s}$,
 - Maximum ramp \parto Bp/\partot > 16.0 Tm/s (higher for 900 ms cycle ?)
 - Expectation for H⁻ for Linac 4:
 - $\partial B\rho/\partial t = 10 \text{ Tm/s}$ is upper limit,

Basic Facts and Considerations

• Bucket for maximum voltage ($V_{h=1} = 8kV$, $V_{h=2} = 5kV$) and expected $\partial Bp/\partial t$:

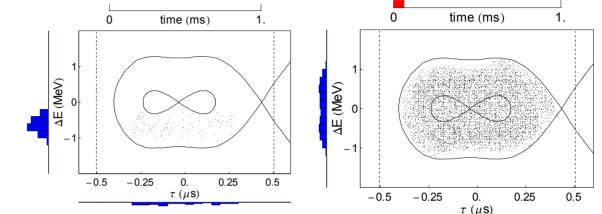
- Little, but not negligible motion in longitudinal phase space:
 - No way to get painting for free from synchrotron motion,
 - > "Active" (energy variation -amplitude ≈≥1.2MeV- and chopping) painting needed !
 - > Necessary Amplitude of energy variation : ~± 1.2 MeV
 - > Attention: Acceptance of the transfer line !!
 - Synchrotron motion may lead to local density increases/increases,
 - Avoid slow painting in one direction (e.g. energy monotonously increasing) only

Basic Facts and Considerations

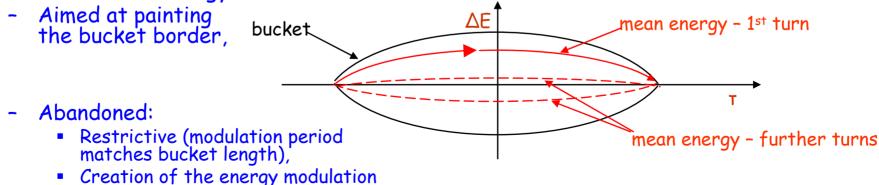
- Energy of "synchronous particle increases during injection:
 - During 100 turns (high intensity) with $\partial B\rho/\partial t = 10 \text{ Tm/s}$: $\approx 156 \text{ MeV}$
 - Adds to needs for energy modulation for injection inro one ring,
 - Ring to ring variations compensated with "Bdl"s (orbit perturbations ~1mm).
- Dispersion in injection straight section:
 - in case the injected beam arrives with D=Om (and D'=O):
 - full bucket height: ~2 MeV,
 - rms momentum spread after injection: $\frac{\sigma_p}{p} \approx \frac{1}{\beta_{rel}^2} \frac{2 MeV/5}{(938.27+160)MeV} \approx 1.3 \cdot 10^{-3}$

horizontal emittance blow-up:
$$\Delta \varepsilon_{rms}^* \approx \beta_{rel} \gamma_{rel} \frac{1}{2} \frac{\left(D \left(\sigma_p / p\right)\right)^2}{\beta_{Twiss}} \approx 0.2 \,\mu m$$

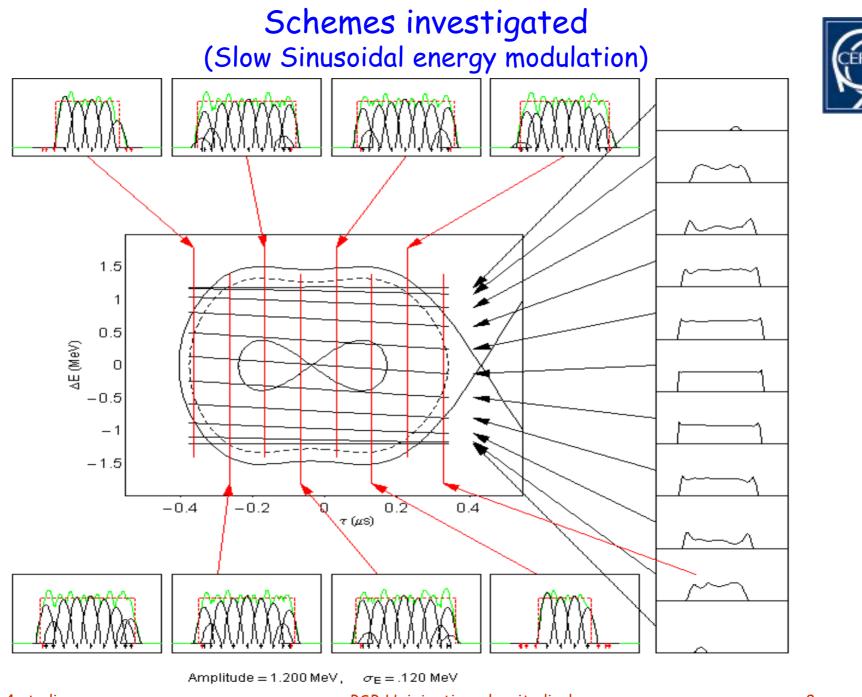
- May be acceptable (thus injected beam arriving with D=Om may be o.k.)
- Better be careful (previous computation led to opposite result) !!
- > matched D at injection -> larger beam, more foil hits ... !?
- Number of injected turns:


- Painting in three phase spaces with only 9 injected turns (actual figure for LHC)?
- Are in-homogeneities (unavoidable painting with few turns) a problem ?
- Lengthen injection (at least for low intensities)?
- > Painting in all three phase spaces for H⁻ in PSB a non-trivial problem:
 - > Keep conventional pseudo-adiabatic capture as plan B.

ABP/LII section meeting January 29th, 2007 Longitudinal Painting for a PSB H⁻ injection

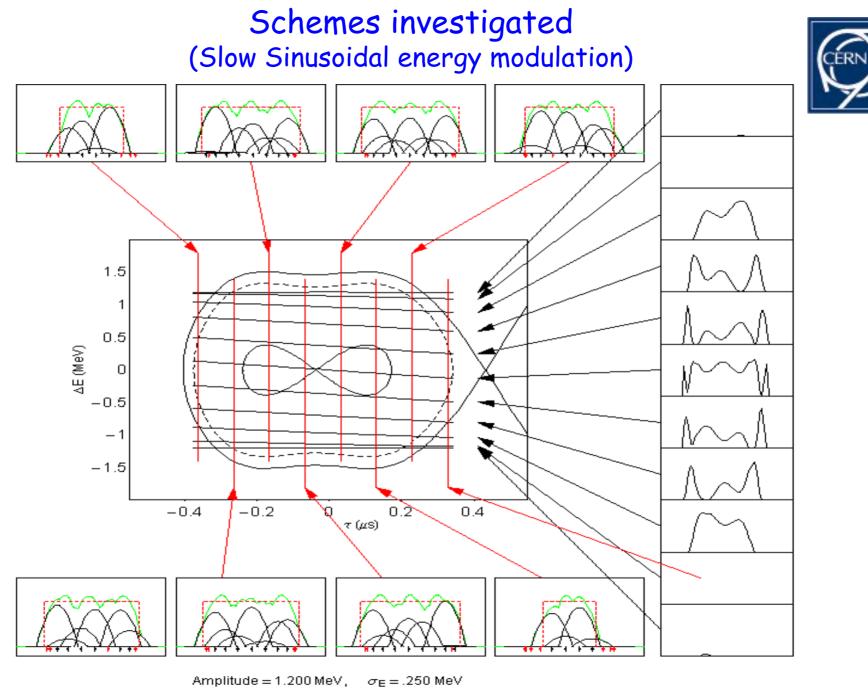

Schemes investigated

- Simple (robust) scheme:
- Just three different energies to be delivered,
- Reasonably smooth (better than pseudo-adiabatic bunching) filling of the bucket.
- Abandoned: energy modulation out of reach for Linac 4
- Fast sinusoidal energy modulation:



Schemes investigated

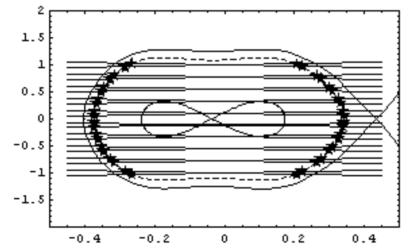
(Slow Sinusoidal energy modulation)



- Initial idea:
 - Slow sinusoidal energy modulation:
 - Say one modulation period takes 20 PSB revolutions (e.g. instead of 9 turns for LHC beams),
 - Algorithm to compute which bunches are taken and which are kicked out by chopper.
- Approach:
 - For fixed longitudinal position,
 - Energy offset at different turns given,
 - Aim at painting a given fraction (say 80%) of the acceptance homogeneously
 - First step: current versus time curves (to be translated into bunch structure -giving right mean current vs time- later)
- Result (plots on following pages):
 - Looks reasonable at a first glance:
 - critical at bucket borders and for large $\sigma_{\!E}$
- Abandoned
 - How to generate energy modulation?

Linac 4 studies

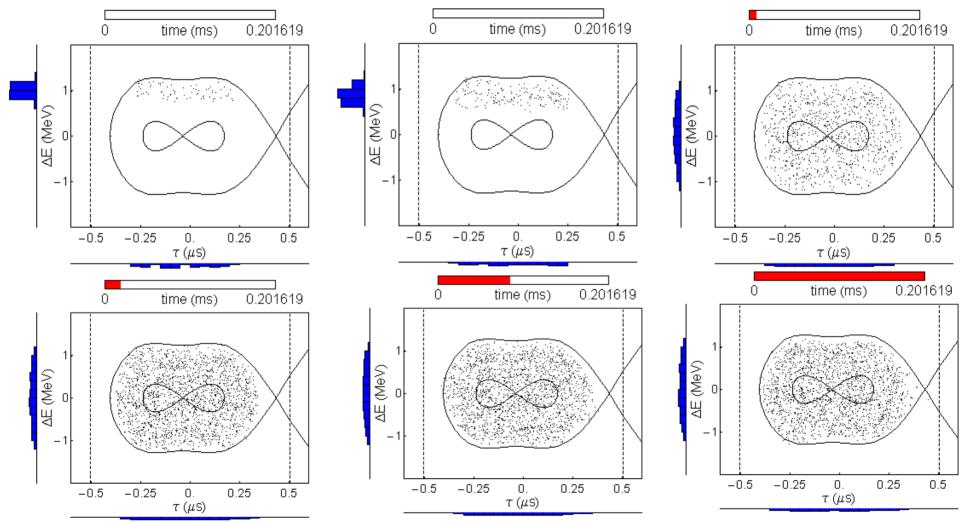
PSB H⁻ injection - longitudinal


Linac 4 studies

PSB H⁻ injection - longitudinal

Schemes investigated (Triangular)

- Motivation:
 - initial ideas (see below) on energy ramping ruled out,
 - linear ramp (energy vs time):
 - "simple" for generation of E modulation,
 - turn-by-turn equidistance.
 - Switching the beam on/off inside/outside a contour (for present simulations 80% of acceptance) in longitudinal phase space



• Result:

- Only promising scheme (in simulations without direct space charge),
- Further simulations (see last slide).

Schemes investigated (Triangular Energy Modulation)

Longitudinal phase after 1, 2, 10, 20 (end of injection), ~100 and 200 revolutions

ABP/LII section meeting January 29th, 2007

Longitudinal Painting for a PSB H⁻ injection

11/13

Energy Modulation

12/13

- Slow sinusoidal modulation based on:
 - Ramping just after Linac 4: Sinusoidal phase modulation at debuncher,
 - Ramping after debuncher: ramping disturbs debunching
 - No way find another scheme !
 - Rule out envisaged painting schemes !
- Phase modulation (like Linac 3 ramping for LEIR):
 - Needs: ~1.2 MV in 10 μs (LEIR ~0.1 MV in 200 μs),
 - Energy modulation cavity:
 - Say cavity right after Linac with amplitude $A_{\cup} = 2.4 \text{ MV}$,
 - ± 1.2 MV corresponds to ± 30 deg (60 deg phase shift in 10 μ s),
 - Ramp up down corresponds to frequency offsets of $\Delta f \approx \pm 17$ kHz.
 - Debuncher (distance | downstream):
 - $\Delta E = \pm 1.2 \text{ MV} \rightarrow \Delta t = (1.89^{*}10^{-11} \text{ s/m}) \text{ I} \rightarrow \Delta \varphi = 2.39 \text{ deg/m}$
 - Very likely to be a limitation (showstopper ?): compromise between distance and maximum phase excursion !!
 - Phase excursion < $\pm 60 \text{ deg} (\Delta f < 35 \text{ kHz}) \rightarrow \text{ k 20m}$
 - Giulia and Alessandra are looking into this !

Summary and Outlook

- Summary:
 - H- injection into PSB somewhat unique for long. painting,
 - Injection with dispersion and (very likely) Bdot,
 - Several schemes investigated,
 - Slow triangular energy modulation most promising.
- Next:
 - How to generate energy modulation (is linear ramp feasible ?),
 - Include space charge (how ?, ESME suitable ? ...),
 - Energy jitter:
 - Pulse to pulse or bunch to bunch (quantify with Energy modulation)?
 - Can PSB phase loop compensate a pulse to pulse jitter ?
 - Add transverse phase space:
 - effect of dispersion (resulting emittance blow-up, correlation between horizontal and vertical phase space),
 - number of injected turns and painting in 6D phase space,
 - consequences for stripping foil ... ,
 - Injection line with energy modulation:
 - acceptance,
 - dispersion (horizontal AND vertical), chromatic effects ...