

Layout and parameters

95	keV <u>3MeV</u>		3MeV	40MeV		90MeV 160MeV
H-	RFQ C	HOPPER _	DTL		·	SCL
RF volume source (DESY) 35 kV Extrac. 60kV Postacc.	Radio Frequency Quadrupole (IPHI) 352 MHz 6 m 1 Klystron 1 MW	Chopper 352 MHz 3.6 m 11 EMquad 3 rf cavity	Drift Tube Linac 352 MHz 13.4 m 3 tanks 5 klystrons 4 MW 82 PMQuad	Cell-Coup Drift Tul Linac 352 MHz 25.3 m 24 tanks 8 klystro 6.5 MW 24 EMQ	oled be z ons uads	Side Coupled Linac 704 MHz 28 m 20 tanks 4 klystrons 12 MW 20 EMQuads
Total Linac4: 80 m, 18 klystrons		Duty cycle: 0.1% phase 1 (Linac4) 3-4% phase 2 (SPL) (design: 15%)		4 different structures, (RFQ, DTL, CCDTL, SCL) 2 frequencies current: 40 mA (avg. in pulse), 65 mA (bunch)		

Beam dynamics simulations

- Optimisation of each section standalone
 - [layout of the accelerator]
- End-to-end simulations with ideal beam and identification of bottlenecks, weak points, acceptance limitations

[fine tuning of layout]

- End-to-end simulation with a "realistic" beam under different working hypothesis
 [solidity of the design against our ignorance]
- Statistical end-to-end simulation with machine tolerances and beam errors

[solidity of the design against reality]

RFQ (IPHI RFQ)

Transverse plane at the RFQ output

- 1) Halo formation (10^{-4})
- Emittance growth in the coupling gap (8%)
- RFQ doesn't filter halo (also from the source), it is a very good transmission channel and the halo particles must be dealt with in the transfer line at 3 MeV.

Ele: 536 [5.39917 m] NGOOD : 499721 / 500000 PlotWin - CEA/DSM/DAPNIA/SACM

1

Chopper line

rad

3) Dump

Why chop?

- "longitudinal matching" from a linac to a ring with the purpose of controlling the losses
 - rise time of the injection kickers/length of the machine.
 - Shave the linac beam to match the RF bucket of the ring
- Perform the chopping at low enough energy but when the beam has already imprinted the RF structure, i.e. after the first stage of acceleration.

Chopper Line : transmitted beam

Losses on the chopper plates (4%) and on the dump (8%). Losses on the plates are 1.3 kW at 15% d.c.

CCDTL and **SCL**

- Transition to a structure which dosen't follow velocity profile cell by cell (3 cell in CCDTL and 11 in SCL)
- o frequency jump
- Costant phase at -20, with matching modules in between the two structures

End-to-end : emittances rms

End-to-end : rms x,y,phase

Transverse phase space at the end of the LINAC

ε_{rms}~0.3 pi mm mrad norm 95% of the beam in xx rms No dispersion

Beam is spherical

Longitudinal phase space at the end of the LINAC -

352 MHz RF period

Longitudinal phase space at the end of the LINAC – several 352 period

longitudinal profile (5 represented out of 200) 161.2 161 160.8 160.6 energy 160.4 160.2 160 159.8 159.6 -6 -2 Ū 2 4 6 -8 -4 8

time (nsec)

Jitter due LINAC RF errors (klystron + manufacturing tolerances)

 Average-energy jitter : 270 keV rms
Average-phase jitter : 1.8 deg at 352MHz i.e. 0.014 nsec

 Random jitter micropulse-tomicropulse (i.e. at 352MHz)

Towards the booster

• Transversally : ???

- Like LINAC2
- Dispersion less than 1.2 m
- o Longitudinally :
 - LINAC2 style : 1 rf cavity
 - LINAC3 style : 2 Rf cavities
 - Nothing at all

LINAC2 style : control the energy spread, reduce the energy jitter

LINAC3 Style : controlled energy ramping and reduction of the micro-pulse energy spread

Doing nothing at all.

In summary

We have under study 3 possible "longitudinal matching" to the booster.

1 RF	2 RF	No RF
Phase almost uniform.	Phase almost uniform.	Phase uniform.
Effective energy	Effective energy	Effective energy
spread 400 keV	spread 2.6 MeV	spread 1.7 MeV

- The three don't deliver the same transverse emitt to the booster (path to the booster is "windy")
- Details on the dynamics/trade off in the transfer line next week by Giulia Bellodi

In summary --continued

LINAC2	50 MeV	protons	160mA	0.01%	E _{rms,n} =1.0
(present inj)					mm mrad
LINAC4	160MeV	H-	70mA	0.08%	E _{rms,n} =0.4 mm mrad

In order to profit from LINAC4 we need to make sure that we transform the beam from LINAC4 into what is optimized for the booster at 160 MeV and we need your input for the design of the lines.