Beam dynamics in the Linac4 to PSB transfer line (green field option)

G Bellodi, A Lombardi

& thanks to discussions with Christian, Brennan, Maurizio etc.

> Constant slope solution favoured over step to avoid lack of continuity b/w tunnel sections for installation and maintenance purposes.

> Current slope (8%) near limit for safe machinery utilisation

Layout

"Nested achromats" solution to minimise effects of dispersion on transverse emittance growth and coupling:

Transverse phase space at the end of Linac4

X-X' (cm rad)

 $\varepsilon_x = \varepsilon_y = 0.35 \text{ mm mrad (RMS norm.)}$ 95% of the beam in 5/6 RMS Dx=D'x=0 , zero coupling Y-Y' (cm rad)

Transverse beam transport

- X

Υ

Envelopes (m)

Dispersion, H & V (m)

Beam at PSB – transversally

- So far assumed Linac2-type conditions: $\alpha \sim 0$, small β (<10 m)
- Some freedom for tuning in 2nd part of the transfer line after BHZ30 (6 doublet pairs before injection foil):
 - envelope matching
 - □ zero coupling
 - beam offset
- At PSB: Dx=1.42 m & Dy=0

what are the effects of any dispersion mismatch at injection?

what is the interplay b/w longitudinal and transverse planes at injection?

Longitudinal phase space

Input beam (MeV-ns)

E=163.05 MeV I = 65 mA Energy spread (keV) and phase width (deg) under space charge forces

1) Linac2-type injection:

Beam at Booster:

2) Linac3-type injection:

Energy ramping and longitudinal painting:

X' [rad] x 10E-4

One ramping cavity (2.4 MV) just after Linac4

Linear ramp (energy vs time): [-30 deg, -1.2 MeV] to [30 deg, 1.2 MeV] in 10 µs triangular sweep

Phase-modulated debuncher cavity

3) Radical: no manipulations

All 3 at a glance..

	Case 1		Case 2		Case 3	
	no jitter	jitter	no jitter	jitter	no jitter	jitter
ε _x mm mrad (RMS norm)	0.38 (+8%)	0.385 (+10%)	1.92 (x5, effective)	1.96 (effective)	0.59 (+68%)	0.75 (+120%)
ε _y mm mrad (RMS norm)	0.48 (36%)	0.48 (36%)	0.58 (+66%)	0.58 (+66%)	0.53 (+52%)	0.53 (+52%)
∆E (90%) keV	165	~200	painting		540	810
Δφ (90%) rad	1	~1.6	painting		3.1	4.8

Jitter due to Linac RF errors: $\sigma_{\rm E}{=}270$ keV, $\sigma_{\phi}{=}1.8$ deg RMS at 352 MHz

PSB bucket (0.1 μ s slice) / case 3

Next?

Worth considering a

case 4: more "relaxed" energy modulation & no debuncher cavity to take advantage of 'natural' energy spread? what about uncontrolled jitter effects?

- Continue beam simulations in the Booster (in transfer line approximation)
- Combine transverse & longitudinal studies:
 - effects of dispersion at injection (transverse emittance blowup, correlation b/w transverse and longitudinal phase spaces..)
 - consequences for stripping foil
 - transverse emittance budget?
 - is energy modulation feasible with planned injection HW equipment?
 - line acceptance and required physical aperture?
 - effects of H/V coupling
 - effect of energy jitter due to Linac RF errors...
- Beam dump and diagnostics