TMC Instability in the SPS : HEADTAIL simulations and MOSES calculations

E. Métral, G. Rumolo, B. Salvant, R. Tomás

Agenda

Context

- Methods
 - HEADTAIL Simulations
 - Sussix algorithm
 - MOSES calculations

Results

Real Tune shift and Imaginary tune shift (instability rise time) for

- Chromaticity = 0 and no coupling
- Chromaticity \neq 0 and no coupling
- Chromaticity = 0 and no coupling
- Chromaticity = 0 and Linear Coupling ∫
- Outlook and Perspectives

Round beam pipe

Flat beam pipe

Context

- Measurements in the SPS (2003)
 - LHC type Single bunch intensity=1.15 p/b low longitudinal Emittance.
 - \rightarrow very fast transverse instability
 - → Travelling-wave pattern
 - \rightarrow depends on ξ_y

=> is this measured instability a TMCI?

H. Burkhardt et al, proc EPAC 2004

- HEADTAIL Simulations
 - Using a broadband impedance model, simulation yield
 - A fast ξ_y dependent instability with a travelling wave pattern.

=> is this simulated instability a TMCI ?

- Theory
 - Intensity threshold due to coupling by a broadband impedance can be calculated with Sacherer's model
 - MOSES calculates real and imaginary tune shifts in the mode-coupling formalism

Therefore : - how do MOSES calculations compare with HEADTAIL simulations? - Can we find reasons to believe that we observe TMCI in HEADTAIL?

Agenda

- Context
- Methods
 - HEADTAIL Simulations
 - Sussix algorithm
 - MOSES calculations

Results

Real Tune shift and Imaginary tune shift (instability rise time) for

- Chromaticity = 0 and no coupling
- Chromaticity \neq 0 and no coupling
- Chromaticity = 0 and no coupling
- Chromaticity = 0 and Linear Coupling J
- Outlook and Perspectives

Round beam pipe

Flat beam pipe

HEADTAIL Simulations (*)

500 slices

6 Bunches circulating in a schematic ring

- 10⁶ macroparticles
- Frozen Wake field (i.e. the wake field is not recalculated at every turn)
 → only to be applied if the bunch is matched in the bucket
- Simulations over 10,000 turns (~ 0.23 sec)
- Linear Bucket

(*) G. Rumolo, F. Zimmermann, SL-Note 2002-036-AP

Headtail Simulated beam parameters

Parameter	Symbol	Value	Unit
Circumference		6911	m
Number of bunches		1	
Relativistic Gamma		27.7286	
Rms beam sizes	σ _x , σ _y	1.8	mm
Horizontal Tune	Q _x	26.185	
Vertical Tune	Q _y	26.13	
chromaticities	ξ _{x,y}	0 / 0	
Bunch length		0.21	
Longitudinal Momentum spread	∆p/p ₀	9.3 10 ⁻⁴	
Synchrotron Tune	Q _s	3.24 10 ⁻³	
Cavity Harmonic Number		4620	
Momentum Compaction Factor		1.92 10 ⁻²	
BroadBand shunt impedance		10	MΩ/m
BroadBand resonant frequency		1	GHz
BroadBand quality factor		1	
Kick amplitude (both x and y)		0.9	mm
Beta function	β _x , β _y	40	m
Type of geometry		axisymetric	

What to do with HEADTAIL outputs ?

- 1. Extract the position of the centroid of the bunch (vertical or horizontal) turn after turn \rightarrow simulated BPM signal
- 2. Apply a classical FFT to this simulated BPM signal (*x*)
- 3. Apply SUSSIX to this same simulated BPM signal (actually $x j \beta_x x'$)
- 4. Normalize the tune spectrum Q to Q_s , and translate it so that $Q_x=0$

Comparison of FFT and SUSSIX

- FFT frequency points are fixed and equally spaced (by 1/Npoints)
- Sussix frequency points are not predefined
- Sussix features:
 - Input = complex signal $(x j \beta_x x')$
 - Iterative method to find the main peaks in the region of interest
 - Hanning filter to reduce noise due to windowing in the time domain
 - Fourier analysis, not FFT

Agenda

- Context
- Methods
 - HEADTAIL Simulations
 - Sussix algorithm
 - MOSES calculations

Results

Real Tune shift and Imaginary tune shift (instability rise time) for

- Chromaticity = 0 and no coupling
- Chromaticity \neq 0 and no coupling
- Chromaticity = 0 and no coupling
- Chromaticity = 0 and Linear Coupling J

Round beam pipe

Flat beam pipe

Outlook and Perspectives

Round beam pipe / no chromaticity / no coupling simulated BPM signal

Round beam pipe / no chromaticity / no coupling Displaying the real part of the tune shift Re[Δ Q] as a function of current

for Nb = $3 \ 10^9 \text{ p/b} (I_b = 0.02 \text{ mA})$

Round beam pipe / no chromaticity / no coupling Displaying the real part of the tune shift $Re[\Delta Q]$ as a function of current (Another example)

Round beam pipe / no chromaticity / no coupling \rightarrow displaying $Re[\Delta Q]=f(I_b)$

 \rightarrow Transverse modes are observed to shift, couple and decouple with current

Round beam pipe / no chromaticity / no coupling $Re[\Delta Q] = f(I_b)$ and comparison with MOSES

MOSES and HEADTAIL agree for the mode shifting and coupling

Round beam pipe / no chromaticity / no coupling

Extracting the imaginery part of the tune shift $Im[\Delta Q]$

• Exponential fit of the growth of the instability : $f(x)=A \exp(B.t)$

Growth rate

Round beam pipe / no chromaticity / no coupling Reference \rightarrow displaying $Im[\Delta Q]=f(I_b)$

Round beam pipe / no chromaticity / no coupling $Im[\Delta Q]=f(I_b)$ and comparison with MOSES

MOSES and HEADTAIL also agree for the rise times

Agenda

- Context
- Methods
 - HEADTAIL Simulations
 - Sussix algorithm
 - MOSES calculations

Results

Real Tune shift and Imaginary tune shift (instability rise time) for

- Chromaticity = 0 and no coupling
- Chromaticity \neq 0 and no coupling
- Chromaticity = 0 and no coupling
- Chromaticity = 0 and Linear Coupling

Round beam pipe

Flat beam pipe

Outlook and Perspectives

Round beam pipe / chromaticity = 1/Q / no coupling Frequency Analysis (horizontal plane)

٠

4000 Number of turns 10000

Number of turns

=> modes still clearly shift, but it is not clear whether the instability is due to coupling.

Round beam pipe / various chromaticities / no coupling Frequency Analysis (horizontal plane)

Reference (Round Chamber)

Reference + $\xi = 1/Q$

Reference + $\xi = 5/Q$

Reference $+ \xi = 10/Q$

Round beam pipe / chromaticity = 1/Q / no coupling Frequency Analysis (horizontal plane)

- It looks like mode

 2 and -3 do not
 couple anymore,
 even though ξ is
 small.
- Mode -3 couples with itself????

Round beam pipe / chromaticity = 5/Q / no coupling Frequency Analysis (horizontal plane)

No obvious mode coupling here

Round beam pipe / chromaticity = 10/Q / no coupling Frequency Analysis (horizontal plane)

- Mode shifting can not be seen anymore
- No obvious mode coupling here

Round beam pipe / various chromaticities / no coupling Rise times (horizontal plane)

Agenda

- Context
- Methods
 - HEADTAIL Simulations
 - Sussix algorithm
 - MOSES calculations

Results

Real Tune shift and Imaginary tune shift (instability rise time) for

- Chromaticity = 0 and no coupling
- Chromaticity \neq 0 and no coupling
- Chromaticity = 0 and no coupling
- Chromaticity = 0 and Linear Coupling J
- Round beam pipe

Flat beam pipe

Outlook and Perspectives

Flat beam pipe / no chromaticity / no coupling → Frequency Analysis (horizontal plane)

Flat beam pipe / no chromaticity / no coupling $\rightarrow Re[\Delta Q_x] = f(I_b)$

Flat beam pipe / no chromaticity / no coupling $\rightarrow Im[\Delta Q_x] = f(I_b)$

Instability threshold not met -> $Im[\Delta Q_x] = 0$

Flat beam pipe / no chromaticity / no coupling $\rightarrow Re[\Delta Q_y] = f(I_b)$

Flat beam pipe / no chromaticity / no coupling $\rightarrow Im[\Delta Q_y] = f(I_b)$

Instability Threshold = 0.24 mA

Agenda

- Context
- Methods
 - HEADTAIL Simulations
 - Sussix algorithm
 - MOSES calculations

Results

Real Tune shift and Imaginary tune shift (instability rise time) for

- Chromaticity = 0 and no coupling
- Chromaticity \neq 0 and no coupling
- Chromaticity = 0 and no coupling
- Chromaticity = 0 and Linear Coupling
- Outlook and Perspectives

Round beam pipe

Flat beam pipe

Flat beam pipe / no chromaticity / Linear coupling → Frequency Analysis (horizontal plane)

Headtail and the theory lead to the same coupled tunes

Flat beam pipe / no chromaticity / Linear coupling $\rightarrow Re[\Delta Q_v] = f(I_b)$

Flat beam pipe / no chromaticity / Linear coupling $\rightarrow Im[\Delta Q_x] = f(I_b)$

Outlook

- Agreement of MOSES and HEADTAIL for most modes shifting and coupling with current.
- HEADTAIL is therefore a very interesting tool to understand the reasons behind such fast instabilities. It could then be used to raise limiting current thresholds in the machine.
- Some questions remain:
 - Several radial modes are observed in HEADTAIL, which are not predicted by MOSES (ex: -2)
 - In particular, one of these radial modes (-1) couples with the main tune in HEADTAIL, leading to a weak instability.

Perspectives

- These studies were performed with a broadband resonator. More realistic Resistive Wall models of impedance are under implementation, and could soon be inputs of Headtail.
- The space charge model needs to be implemented and checked.
- A similar study could be performed for the longitudinal mode coupling. (L. Rivkin)
- It is now clear that the HEADTAIL simulated instability is a TMCI
 What about the real instability in the machine ???
 → MD proposed in 2007 to see whether we can get more information on the modes shifting and coupling.

Merci beaucoup pour leur aide à:

John Jowett Yiannis Papaphilippou Lenny Rivkin Bruno Zotter