Emittance analysis for the LHC beam along a 160 MeV plateau in the PSB

M. Martini

Contents

- Simulation scenario and overall results
- LHC nominal beam: analysis on the $1^{\text {st }}$ turn
- LHC nominal beam: analysis on the $1500^{\text {th }}$ turn
- LHC nominal beam: analysis on the $15000^{\text {th }}$ turn
- Summary

Simulation scenario and overall results

LHC nominal beam (high brightness beam - 3.25×10^{12} protons)

$\square \quad$ PSB single turn injection with Accsim on a 160 MeV plateau

- 99999 macro-particles injected and stored for 15000 turns (3.25×10^{12} real particles). The initial transverse normalized rms emittances are $2.5 \mu \mathrm{~m}$.
- The phase and energy half-widths of limiting injected bunch ellipse are 100.2 deg and 1.03 MeV . The bunch length is about 550 ns .
- No H- injection took place, the total proton beam intensity is injected on the $1^{\text {st }}$ turn onto an 8 kV bucket.
- Proton beams injected in the middle of the PSB-ring section L1 where $\alpha_{H, v}=0$ to avoid transverse mismatch and subsequent emittance blow-up. Likewise, the short closed orbit bump (BS1-BS4) was disabled to avoid optics distortions.
[Simulation made using the working point $\mathrm{Q}_{\mathrm{H}}=4.28, \mathrm{Q}_{\mathrm{V}}=5.47$.
- Simulations done with the keyword TSCBUNCH=True in Accsim (which enables to scale the transverse space charge force in line with the local longitudinal charge density in the bunch). The transverse space charge fields were calculated using grid arrays with 0.5 mm spacing of grid points.
- The following emittance analysis is based on Accsim output data ($x, x^{\prime}, y, y^{\prime}, \phi, \Delta E$) stored on the $1^{\text {st }}, 1500^{\text {th }}$ and $15000^{\text {th }}$ tracking turns.

Simulation scenario and overall results

X-X' scatter-plot [mm-mrad] at turns 1, 1500 and 15000

Y-Y' scatter-plot [mm-mrad] at turns 1, 1500 and 15000

Cf. LIS Section meeting held on 2nd April 2007
$Q_{H}=4.28 Q_{V}=5.47 \mathrm{~N}=3.25 \times 10^{12}$ protons (99999 macro-particles tracked)

Simulation scenario and overall results

X-Y scatter-plot ${ }^{(1)}$ [mm-mm] at turns 1, 1500 and 15000
${ }^{1)}$ The physical cross-section of the injected beam is rectangular as no correlation is assumed between horizontal and vertical planes

$\phi-\Delta E$ scatter-plot [deg-MeV] at turns 1, 1500 and 15000

Cf. LIS Section meeting
held on 2nd April 2007

$$
Q_{H}=4.28 Q_{V}=5.47 \mathrm{~N}=3.25 \times 10^{12} \text { protons (99999 macro-particles tracked) }
$$

Simulation scenario and overall results

Physical emittance ${ }^{(1)(2)}[\mu \mathrm{m}]$ scatter-plot at turns 1, 1500 and 15000
${ }^{(1)}$ Calculated Courant-Snyder invariants for individual particles
${ }^{(2)}$ The limiting $20 \mu \mathrm{~m}$ physical emittances correspond to $2.43 \mu \mathrm{~m}$ normalized rms emittances
$Q_{H}=4.28 Q_{V}=5.47 \mathrm{~N}=3.25 \times 10^{12}$ protons (99999 macro-particles tracked)

LHC nominal beam: analysis on the $1^{\text {st }}$ turn

Normalised emittance ${ }^{(1)}[\mu \mathrm{m}]$ scatter-plot on the $1^{\text {st }}$ turn
${ }^{(1)}$ Calculated Courant-Snyder invariant for individual particles
$Q_{H}=4.28 Q_{V}=5.47 \mathrm{~N}=3.25 \times 10^{12}$ protons (99999 macro-particles tracked)

LHC nominal beam: analysis on the $1^{\text {st }}$ turn

Horizontal \& vertical normalised emittance 1-CPDF ${ }^{(1)}$ plot [\%] at the $1^{\text {st }}$ turn ${ }^{(1)}$ Cumulative probability density function

Horizontal \& vertical normalised emittance $\log -\log 1-C P D F{ }^{(1)}$ plot [\%] at the $1^{\text {st }}$ turn (1) Outliers at end tails removed

15000 particles used for the analysis
$Q_{H}=4.28 Q_{V}=5.47 \mathrm{~N}=3.25 \times 10^{12}$ protons (99999 macro-particles tracked)

LHC nominal beam: analysis on the $1^{\text {st }}$ turn

Horizontal \& vertical normalised rms emittances ${ }^{(1)}$ at the $1^{\text {st }}$ turn vs. $p \%$-acceptance (defined as the fraction of the particle beam with emittance ${ }^{(2)}$ less than a given value)
${ }^{(1)}$ Calculated from the beam "sigma" matrix
${ }^{(2)}$ Calculated for individual particles from the Courant-Snyder invariant with Twiss parameters at injection
$\varepsilon_{\mathrm{u}}(\mathrm{rms})=\sqrt{\left\langle u_{\mathrm{i}}^{2}\right\rangle\left\langle u_{\mathrm{i}}^{\prime 2}\right\rangle-\left\langle u_{\mathrm{i}} u_{\mathrm{i}}^{\prime}\right\rangle^{2}}$ for all i such that $\varepsilon_{\mathrm{u}, \mathrm{i}} \leq \varepsilon_{\mathrm{u}}(\mathrm{p} \%) \quad \varepsilon_{\mathrm{u}, \mathrm{i}}=\gamma_{\mathrm{u}} u_{\mathrm{i}}^{2}+2 \alpha_{\mathrm{u}} u_{\mathrm{i}} u_{\mathrm{i}}^{\prime}+\beta_{\mathrm{u}} u_{\mathrm{i}}^{\prime 2}$
$Q_{H}=4.28 Q_{V}=5.47 \mathrm{~N}=3.25 \times 10^{12}$ protons (99999 macro-particles tracked)

LHC nominal beam: analysis on the $1500^{\text {th }}$ turn

Normalised emittance ${ }^{(1)}[\mu \mathrm{m}]$ scatter-plot on the $1500^{\text {th }}$ turn
${ }^{(1)}$ Calculated Courant-Snyder invariant for individual particles

$$
Q_{H}=4.28 Q_{V}=5.47 \mathrm{~N}=3.25 \times 10^{12} \text { protons (99999 macro-particles tracked) }
$$

LHC nominal beam: analysis on the $1500^{\text {th }}$ turn

Horizontal \& vertical normalised emittance 1-CPDF ${ }^{(1)}$ plot [\%] at the $1500^{\text {th }}$ turn ${ }^{(1)}$ Cumulative probability density function

Horizontal \& vertical normalised emittance log-log 1-CPDF ${ }^{(1)}$ plot [\%] at the $1500^{\text {th }}$ turn ${ }^{(1)}$ Outliers at end tails removed

15000 particles used for the analysis

$$
Q_{H}=4.28 Q_{V}=5.47 \mathrm{~N}=3.25 \times 10^{12} \text { protons (99999 macro-particles tracked) }
$$

LHC nominal beam: analysis on the $1500^{\text {th }}$ turn

Horizontal \& vertical normalised rms emittances ${ }^{(1)}$ at the $1500^{\text {th }}$ turn vs. $\mathrm{p} \%$-acceptance (defined as the fraction of the particle beam with emittance ${ }^{\left({ }^{(2)}\right.}$ less than a given value)
${ }^{(1)}$ Calculated from the beam "sigma" matrix
${ }^{(2)}$ Calculated for individual particles from the Courant-Snyder invariant with Twiss parameters at injection
$\varepsilon_{\mathrm{u}}(\mathrm{rms})=\sqrt{\left\langle u_{\mathrm{i}}^{2}\right\rangle\left\langle u_{\mathrm{i}}^{\prime 2}\right\rangle-\left\langle u_{\mathrm{i}} u_{\mathrm{i}}^{\prime}\right\rangle^{2}}$ for all i such that $\varepsilon_{\mathrm{u}, \mathrm{i}} \leq \varepsilon_{\mathrm{u}}(\mathrm{p} \%) \quad \varepsilon_{\mathrm{u}, \mathrm{i}}=\gamma_{\mathrm{u}} u_{\mathrm{i}}^{2}+2 \alpha_{\mathrm{u}} u_{\mathrm{i}} u_{\mathrm{i}}^{\prime}+\beta_{\mathrm{u}} u_{\mathrm{i}}^{\prime 2}$

$$
Q_{H}=4.28 Q_{V}=5.47 \mathrm{~N}=3.25 \times 10^{12} \text { protons (99999 macro-particles tracked) }
$$

LHC nominal beam: analysis on the $15000^{\text {th }}$ turn

Normalised emittance ${ }^{(1)}$ [$\mu \mathrm{m}$] scatter-plot on the $15000^{\text {th }}$ turn
${ }^{(1)}$ Calculated Courant-Snyder invariant for individual particles
$Q_{H}=4.28 Q_{V}=5.47 \mathrm{~N}=3.25 \times 10^{12}$ protons (99999 macro-particles tracked)

LHC nominal beam: analysis on the $15000^{\text {th }}$ turn

Horizontal \& vertical normalised emittance 1-CPDF ${ }^{(1)}$ plot [\%] at the $15000^{\text {th }}$ turn
${ }^{(1)}$ Cumulative probability density function

Horizontal \& vertical normalised emittance log-log 1-CPDF ${ }^{(1,2)}$ plot [\%]at the $15000^{\text {th }}$ turn
(1) Leptokurtic distribution with power-law tails ($\alpha>2$, non Levy-stable distribution)
${ }^{(2)}$ Outliers at end tails removed

$$
Q_{H}=4.28 Q_{V}=5.47 \mathrm{~N}=3.25 \times 10^{12} \text { protons (99999 macro-particles tracked) }
$$

LHC nominal beam: analysis on the $15000^{\text {th }}$ turn

Horizontal \& vertical normalised emittance log-log tail 1-CPDF plot [\%] at the 15000 ${ }^{\text {th }}$ turn
Convergence to a power-law tail (Pareto) at the 15000 ${ }^{\text {th }}$ turn
Estimation of the tail index (by moving power-law exponent fit) : $\alpha_{H} \approx 10.9 \alpha_{V} \approx 19.6$
Less than $\mathbf{0 . 1 \%}$ of the particles serve to derive the tail index

$$
\operatorname{Prob}\left(\varepsilon_{\mathrm{H}, \mathrm{~V}}>\varepsilon_{0, \mathrm{H}, \mathrm{~V}}\right) \rightarrow \text { constant } \times \varepsilon_{\mathrm{H}, \mathrm{~V}}{ }^{-\alpha_{\mathrm{H}, \mathrm{~V}}}
$$

$Q_{H}=4.28 Q_{V}=5.47 \mathrm{~N}=3.25 \times 10^{12}$ protons (99999 macro-particles tracked)

LHC nominal beam: analysis on the $15000^{\text {th }}$ turn

Horizontal \& vertical normalised rms emittances ${ }^{(1)}$ at the $15000^{\text {th }}$ turn vs. $\mathrm{p} \%$-acceptance (defined as the fraction of the particle beam with emittance ${ }^{(2)}$ less than a given value)
${ }^{(1)}$ Calculated from the beam "sigma" matrix
${ }^{(2)}$ Calculated for individual particles from the Courant-Snyder invariant with Twiss parameters at injection
$\varepsilon_{\mathrm{u}}($ rms $)=\sqrt{\left\langle u_{\mathrm{i}}^{2}\right\rangle\left\langle u_{\mathrm{i}}^{\prime 2}\right\rangle-\left\langle u_{\mathrm{i}} u_{\mathrm{i}}^{\prime}\right\rangle^{2}}$ for all i such that $\varepsilon_{\mathrm{u}, \mathrm{i}} \leq \varepsilon_{\mathrm{u}}(\mathrm{p} \%) \quad \varepsilon_{\mathrm{u}, \mathrm{i}}=\gamma_{\mathrm{u}} u_{\mathrm{i}}^{2}+2 \alpha_{\mathrm{u}} u_{\mathrm{i}} u_{\mathrm{i}}^{\prime}+\beta_{\mathrm{u}} u_{\mathrm{i}}^{\prime 2}$

$$
Q_{H}=4.28 Q_{V}=5.47 \mathrm{~N}=3.25 \times 10^{12} \text { protons (99999 macro-particles tracked) }
$$

Summary

Evolution of rms normalized emittances [$\mu \mathrm{m}$]
Cf. LIS Section meeting held on 2nd April 2007

From ACCSIM output

Evolution of rms normalized emittance blow-ups [\%]

$$
Q_{H}=4.28 Q_{V}=5.47 \mathrm{~N}=3.25 \times 10^{12} \text { protons (99999 macro-particles tracked) }
$$

Summary

Horizontal \& vertical normalised rms emittances ${ }^{(1)}$ vs. turns
${ }^{(1)}$ Calculated from the beam "sigma" matrix

$$
\varepsilon_{\mathrm{u}}(\mathrm{rms})=\sqrt{\left\langle u_{\mathrm{i}}^{2}\right\rangle\left\langle u_{\mathrm{i}}^{\prime 2}\right\rangle-\left\langle u_{\mathrm{i}} u_{\mathrm{i}}^{\prime}\right\rangle^{2}} \quad \text { for all } \mathrm{i}
$$

Horizontal \& vertical normalised emittances at $100 \%, 99 \%, 98 \%, 95 \%{ }^{(1)}$ and 4 rms vs. turns ${ }^{(1)}$ Calculated Courant-Snyder invariant

$$
\varepsilon_{\mathrm{u}}(\max)=\max _{\mathrm{i}}\left(\gamma_{\mathrm{u}} u_{\mathrm{i}}^{2}+2 \alpha_{\mathrm{u}} u_{\mathrm{i}} u_{\mathrm{i}}^{\prime}+\beta_{\mathrm{u}} u_{\mathrm{i}}^{\prime 2}\right)
$$

$Q_{H}=4.28 Q_{V}=5.47 \mathrm{~N}=3.25 \times 10^{12}$ protons (99999 macro-particles tracked)

Summary

Horizontal \& vertical normalised emittances at 95\% (1) and 4 rms vs. turns

$$
\varepsilon_{\mathrm{u}}(\mathrm{rms})=\sqrt{\left\langle u_{\mathrm{i}}^{2}\right\rangle\left\langle u_{\mathrm{i}}^{\prime 2}\right\rangle-\left\langle u_{\mathrm{i}} u_{\mathrm{i}}^{\prime}\right\rangle^{2}} \quad \text { for all i }
$$

Horizontal \& vertical normalised emittances at $100 \%, 99 \%$ and 98% vs. turns

$$
\varepsilon_{\mathrm{u}}(\max)=\max _{\mathrm{i}}\left(\gamma_{\mathrm{u}} u_{\mathrm{i}}^{2}+2 \alpha_{\mathrm{u}} u_{\mathrm{i}} u_{\mathrm{i}}^{\prime}+\beta_{\mathrm{u}} u_{\mathrm{i}}^{\prime 2}\right)
$$

$$
Q_{H}=4.28 Q_{V}=5.47 \mathrm{~N}=3.25 \times 10^{12} \text { protons (99999 macro-particles tracked) }
$$

Summary

Fraction of the particle beam [\%] with horizontal \& vertical rms emittances ${ }^{(1)}$ less than or equal to the $2.5 \mu \mathrm{~m}$ LHC nominal normalized rms emittances at PSB output vs. turns
${ }^{(1)}$ Calculated from the beam "sigma" matrix

$$
Q_{H}=4.28 Q_{V}=5.47 \mathrm{~N}=3.25 \times 10^{12} \text { protons (99999 macro-particles tracked) }
$$

