ERDs for the CT extraction in the PS First results of a new correction scheme

G. Arduini, O. E. Berrig, <u>Andrea Franchi</u>, S. Gilardoni, M. Giovannozzi, M. Martini

LIS meeting 11 June 2007

- 1. Overview and motivations
- 2. Present correction scheme
- 3. Principle of the new correction scheme
- 4. Application manual & first results
- 5. Summary & conclusion

SDM 11.05.2005 - dimensions not proportional to machines real sizes / from A8_complex.cdr

× The centroids in (X, PX) of the ejected islands are not the same

× 3 skew quads in TT10 exchange the transv. emittances

× Result: the beamlets are injected in the SPS with a vertical offset

× Result: vertical emittance blow up

Extraction

Septum16

 $\alpha \Delta V^2$

800

900

longitudial position [m]

1000

1100

1200

700

bump16

<u>Constraints</u>

 The 2 kickers are next to each other => only the angle PX can be corrected (vertical arrows in the picture) [up to 2006]
The kicker voltage can be only positive => beamlets with positive angle PX @ the entrance of the ERDs cannot be corrected

11 11

Beamlet centroids @ the ERD1

New correction scheme (principle)

1. The 2nd kicker (ERD2) has been moved ~ 20 m downstream the ERD1 (~62° phase advance) => correction in angle & position

62° phase advance is a trade off between the best "angle & position" correction (90°) and other constraints (installation, aperture)

New correction scheme (principle) Beamlet centroids @ the ERD1 = kick from ERD1 & ERD2 1. The 2nd kicker (ERD2) has been The center of mass 🔯 is off set moved ~ 20 m downstream the to overcome the V>o limit ERD1 (~62° phase advance) => 0.5 correction in angle & position ox [mrad] 2. To overcome the V>O limit, the Δ beam is displaced with 3 BHZs

=> the largest angle @ ERD1

/oltage > only

8

New correction scheme (principle)

- 1. The 2nd kicker (ERD2) has been moved ~ 20 m downstream the ERD1 (~62° phase advance) => correction in angle & position
- 2. To overcome the V>O limit, the beam is displaced with 3 BHZs => the largest angle @ ERD1 is ~ zero
- 3. The ERD2 impart a turn-byturn variable kick and reduce the "spread"

New correction scheme (principle)

- 1. The 2nd kicker (ERD2) has been moved ~ 20 m downstream the ERD1 (~62° phase advance) => correction in angle & position
- 2. To overcome the V>O limit, the beam is displaced with 3 BHZs => the largest angle @ ERD1 is ~ zero
- 3. The ERD2 impart a turn-byturn variable kick and reduce the "spread"
- 4. 4 Bending magnets (BHZ377/8 & MAL1001s) downstream the ERDs are used to correct the "average" trajectory

Beamlet centroids downstream MAL1001

1. Measure the vertical beamlet positions in the SPS right after the injection (First-Turn option)

2. Infer the initial conditions (X,X') at the beginning of TT2 that best reproduce the measured SPS values

3. Launch a routine that, given the TT2-TT10 setting and the initial conditions of the 5 beamlets/slice, find the best corrector setting (BHZs, ERDs, MAL1001)

BEST BHZ117	correction	[A,mrad]	: 0.7567593	0.1000E-03
BEST BHZ147	correction	[A,mrad]	: 0.7567593	0.1000E-03
BEST BHZ167	correction	[A,mrad]	: 0.9586615	0.1000E-03
BEST BHZ377	correction	[A,mrad]	: -0.8695056	-0.5000E-04
BEST MAL100103	correction	n [mrad]	:	-0.1600E-03

BEST DFA242 s	etting [kV	/,mrad] :	12.56443	0.1400E-03
DFA242 START FROM SLICE # 5				
BEST DFA243-1	setting [kV	[,mrad] :	9.444498	0.1200E-03
BEST DFA243-2	setting [kV	[,mrad] :	9.444498	0.1200E-03
BEST DFA243-3	setting [kV	[,mrad] :	9.444498	0.1200E-03
BEST DFA243-4	setting [kV	[,mrad] :	15.74083	0.2000E-03
BEST DFA243-5	setting [kW	[,mrad] :	15.74083	0.2000E-03

4. 2006: Run MADX with the new setting, and check the vertical offset in the SPS

2007 First Results

May 25, 2007: First measurement of the vertical offset in the SPS with the new setting.

The steering setting in TT2 (upstream the ERDs) and in TT10 (downstream the ERDs) did not work => First: ERDs setting implement only

The steering setting in TT2 (upstream the ERDs) and in TT10 (downstream the ERDs) did not work => Second: ERDs setting implement + MICADO

The computed DFA242 strength (last turn only) is half of the value set in CCC [calibration curves angle Vs Voltage checked with kicker specialists]

×MADX simulations confirm the presence of factor 2.

×DFA242Timing had to be shift to "center" the beam.

=> SPS BPM timing/gating to be checked

New correction scheme

The correction, even on the paper, cannot be perfect!

1. ERD1 will remain pedestal (constant Vs time) until 2009

RED TAL

2. ERDs staircase: turn by turn the voltage can be either increased or left at the same value (± 10%). 4th & 5th turns must have the same voltage (to avoid mismatch of the rise time between PS kickers [70/80 ns] & ERD2 [~500 ns])

Summary & conclusion

- The slice/beamlets extracted with the CT (& MTE) enter in TT2 with a slice-dependent <u>horizontal</u> offset, that leads to a <u>vertical</u> emittance blow up in the SPS if not corrected.
- 2. The BHZs are used to correct the global trajectory, while two ERD kickers (1 pedestal & 1 staircase) are used to steer the beamlets individually => vertical offset in the SPS ~ 2.5(10^{max}) mm (measur. 2006)
- 3. A new correction scheme has been tested => vertical offset in the SPS ~ 1(2 ^{max}) mm.
- 4. SPS BPM timing to be checked [last slice only]
- 4. To be checked: steering (should be included or left to MICADO?) + DFA242 timing & strength