ERDs for the CT extraction in the PS

$$
\begin{aligned}
& \text { First results of a new } \\
& \text { correction scheme }
\end{aligned}
$$

G. Arduini, O. E. Berrig, Andrea Franchi,
S. Gilardoni, M. Giovannozzi, M. Martini

LIS meeting 11 June 2007

Outline

1. Overview and motivations
2. Present correction scheme
3. Principle of the new correction scheme
4. Application manual \& first results
5. Summary \& conclusion

Overview:the CT extraction

Overview:the CT extraction

$\times Q x=6.25$ => 90° rot./turn
\times The el. septum in SS31 shave hor. the beam \times Each slice enters in the ma. septum in SS16 \& is ejected

Overview:the CT extraction

Overview: the CT extraction

\times The centroids in ($X, P X$) of the ejected islands are not the same $\times 3$ skew quads in TT10 exchange the transv. emittances

Present correction scheme

1. The trajectory averaged over the 5 turns is corrected with 3 BHZs (Automatic Beam Steering)

Beamlet centroids @ the ERD1个 = kick from ERD1 \& ERD2

Present correction scheme

1. The trajectory averaged over the 5 turns is corrected with 3 BHZs (Automatic Beam Steering)
2. The 2 ERDs (1 pedestal +1 staircase=turn by turn) can correct the trajectory of [each beamlet

Extraction Septum16

Extraction line

Fast Kickers 13/21 \& 9 kick all beamlets

Slow bump16

Present correction scheme

Constraints

1. The 2 kickers are next to each other \Rightarrow, only the angle PX can be corrected (vertical arrows in the picture) [up to 2006]
2. The kicker voltage can be only positive $=>$ beamlets with positive angle PX @ the entrance of the ERDs cannot be corrected

Present correction scheme

New correction scheme (principle)

1. The $2^{\text {nd }}$ kicker (ERD2) has been moved ~ 20 m downstream the ERD1 ($\sim 2^{\circ}$ phase advance) => correction in angle \& position

62° phase advance is a trade off between the best "angle \& position" correction $\left(90^{\circ}\right)$ and other constraints (installation, aperture)

New correction scheme (principle)

1. The $2^{\text {nd }}$ kicker (ERD2) has been moved ~ 20 m downstream the ERD1 ($\sim 2^{\circ}$ phase advance) => correction in angle \& position
2. To overcome the $V>0$ limit, the beam is displaced with 3 BHZs => the largest angle @ ERD1 is ~ zero

New correction scheme (principle)

1. The 2nd kicker (ERD2) has been moved ~ 20 m downstream the ERD1 ($\sim 2^{\circ}$ phase advance) => correction in angle \& position
2. To overcome the $V>0$ limit, the beam is displaced with 3 BHZs => the largest angle @ ERD1 is ~ zero
3. The ERD? impart a turn-byturn variable kick and reduce the "spread"

New correction scheme (principle)

1. The 2nd kicker (ERD2) has been moved ~ 20 m downstream the ERD1 ($\sim 2^{\circ}$ phase advance) => correction in angle \& position
2. To overcome the $V>0$ limit, the beam is displaced with 3 BHZs => the largest angle @ ERD1 is ~ zero
3. The ERD? impart a turn-byturn variable kick and reduce the "spread"
4. 4 Bending magnets (BHZ377/8 \& MAL1001s) downstream the ERDs are used to correct the "average" trajectory

New correction scheme (principle)

Application manual

1. Measure the vertical beamlet positions in the SPS right after the injection (First-Turn option)

Application manual

2. Infer the initial conditions $\left(X, X^{\prime}\right)$ at the beginning of TT2 that best reproduce the measured SPS values

2006

beam position recorded in SPS BPV. 13508

Application manual

3. Launch a routine that, given the TT2-TT10 setting and the initial conditions of the 5 beamlets/slice, find the best corrector setting (BHZs, ERDs,MAL1001)

******************* STEERERS *************************			
BEST BHZ117	correction [A, mrad]	:	0.7567593

********************* ERD *************************
BEST DFA242 setting [kV,mrad]: 12.56443 0.1400E-03

DFA242 START FROM SLICE \# 5
BEST DFA243-1 setting [kV,mrad] : 9.444498 0.1200E-03
BEST DFA243-2 setting [kV,mrad] : 9.444498 0.1200E-03
BEST DFA243-3 setting [kV,mrad] : 9.444498 0.1200E-03
BEST DFA243-4 setting [kV,mrad]: 15.74083 0.2000E-03
BEST DFA243-5 setting [kV,mrad] : 15.74083 0.2000E-03

Application manual

4. 2006: Run MADX with the new setting, and check the vertical offset in the SPS

2007 First Results

May 25, 2007: First measurement of the vertical offset in the SPS with the new setting.

2007 First Results, but

The steering setting in TT2 (upstream the ERDs) and in TT10 (downstream the ERDs) did not work \Rightarrow First: ERDs setting implement only

2007 First Results, but

The steering setting in TT2 (upstream the ERDs) and in TT10 (downstream the ERDs) did not work \Rightarrow Second: ERDs setting implement + MICADO

2007 First Results, but

The computed DFA242 strength (last turn only) is half of the value set in CCC [calibration curves angle Vs Voltage checked with kicker specialists]

2007 First Results, but

\times MADX simulations confirm the presence of factor 2 . -DFA242Timing had to be shift to "center" the beam.
\Rightarrow SPS BPM timinglgating to be checked

New correction scheme

The correction, even on the paper, cannot be perfect!

1. ERD1 will remain pedestal (constant Vs time) until 2009
2. ERDs staircase: turn by turn the voltage can be either increased or left at the same value ($\pm 10 \%$). $4^{\text {th }} \& 5^{\text {th }}$ turns must have the same voltage (to avoid mismatch of the rise time between PS kickers [70/80 ns] \& ERD2 [~500 ns])

Typical Staircase Waveform

Summary \& conclusion

1. The slice/beamlets extracted with the CT (\& MTE) enter in TT2 with a slice-dependent horizontal offset, that leads to a vertical emittance blow up in the SPS if not corrected.
2. The BHZs are used to correct the global trajectory, while two ERD kickers (1 pedestal \& 1 staircase) are used to steer the beamlets individually $=>$ vertical offset in the SPS ~ 2.5(10 max) mm (measur. 2006)
3. A new correction scheme has been tested $\Rightarrow>$ vertical offset in the SPS ~ 1(2 max) mm.
4. SPS BPM timing to be checked [last slice only]
5. To be checked: steering (should be included or left to MICADO?) + DFA242 timing \& strength
