(SLOW) HEAD-TAIL INSTABILITY IN THE PS ON THE LONG (1.2 s) INJECTION FLAT-BOTTOM

E. Métral, G. Rumolo and B. Salvant

Work presented at PAC07

⇒ Comparison between measurements, theory and HEADTAIL simulations

- Effect of chromaticity
- Effect of linear coupling between the transverse planes

MEASUREMENTS (1/2)

Elias Métral, LIS meeting, 10/12/2007

MEASUREMENTS (2/2)

Figure 4: Measured ΔR signals from a radial beam-position monitor during 20 consecutive turns, in the PS with minimum coupling [5]: (a) $\xi_x \approx -0.5$, (b) $\xi_x \approx -0.7$, (c) $\xi_x \approx -1.1$, (d) $\xi_x \approx -1.2$, (e) $\xi_x \approx -1.3$. Time scale: 20 ns/div.

HEADTAIL SIMULATIONS (1/7)

Table 1: Basic beam and PS parameters relevant for this simulation study.

Parameter	Value	Unit
Circumference	628	m
# of bunches	1	
Relativistic γ	2.49	
# of protons / bunch	1.6×10^{12}	
Horiz. tune	6.22	
Vert. tune	6.25	
Horiz. / vert. relative	{-1,-0.1} / {-1,-0.1}	
chromaticities		
Rms bunch length	12.8	m
Rms long. mom. spread	0.001	
Synchrotron tune	0.00124	
Cavity harmonic number	7	
Mom. compaction factor	0.027	
Beam pipe ½ axes (H,V)	(70,35)	mm
Beam pipe resistivity	10 ⁻⁶	Ωm

 \Rightarrow RW impedance

Figure 5: Comparison of the instability rise-times (left) and real part of the tunes (right) with the associated mode number |m| between Sacherer's theory (using a parabolic bunch) and HEADTAIL simulations vs. chromaticity.

HEADTAIL SIMULATIONS (3/7)

Figure 6: Instability rise-times (with the associated mode number |m|) vs. chromaticity predicted from Sacherer's formula using a Gaussian bunch.

HEADTAIL SIMULATIONS (4/7)

Figure 7: Examples of head-tail modes observed in the HEADTAIL simulations, when superimposing every 10 turns of the 20000 simulated turns at a beam position monitor, for various horizontal chromaticities.

HEADTAIL SIMULATIONS (5/7) Effect of linear coupling between the transverse planes

HEADTAIL SIMULATIONS (6/7)

HEADTAIL SIMULATIONS (7/7)

Comparison with (some) theory

Sacherer's formula

$$\Delta \omega_{m,m}^{x,y} = U_{x,y}^m - j V_{x,y}^m$$

Necessary condition for stability

$$\mathbf{y} \quad V_x^m + V_y^m \leq \mathbf{0}$$

$$\begin{aligned} &|\underline{K}_{0}(l)| \geq \frac{2\left[-Q_{x0}Q_{y0}V_{x}^{m}V_{y}^{m}\right]^{1/2}}{R^{2}\Omega_{0}} \times \frac{\left[\left(V_{x}^{m}+V_{y}^{m}\right)^{2}+\Omega_{0}^{2}\left(Q_{h}-Q_{v}-l\right)^{2}\right]^{1/2}}{-\left(V_{x}^{m}+V_{y}^{m}\right)} \end{aligned}$$

Due to
$$\xi_x = -0.5$$

$$\underline{K}_0 \Big|_{\text{limit}}^{\text{theory}} = 2.7 \ 10^{-5} \ \text{m}^{-2}$$

To be compared to 1.9 10⁻⁵ m⁻² found from HEADTAIL (over ~ 1.1 s)

 $V_x^4 = 11.2 \text{ s}^{-1}$ $V_y^4 = -41.4 \text{ s}^{-1}$

CONCLUSIONS AND OUTLOOK

- The HEADTAIL simulation code has been benchmarked against Sacherer's formula in the case of the CERN PS low-energy horizontal resistive-wall instability (artificially increasing the impedance and therefore decreasing the simulation time by ~16) for various chromaticities
- ◆ A good agreement was revealed when a parabolic bunch was used for the analytical computations, whereas a poor agreement was obtained for the higher-order head-tail modes using a Gaussian bunch (as already known ⇒ Use parabolic bunches for protons!)
- Full-scale HEADTAIL simulations during ~ 1.1 s also revealed the possibility to stabilise the beam by linear coupling (only) when an asymmetry between the two transverse planes is introduced through chromaticities, as predicted theoretically
- The simulated case used ξ_x = 0.5 and ξ_y = 1.0, whereas the measured chromaticities were (in the past) ξ_x = 0.9 and ξ_y = -1.3
 ⇒ The next steps will consist to re-measure precisely the chromaticities and simulate cases even closer to reality, introducing also space charge, better model of the impedance...

APPENDIX A: Parabolic bunch

APPENDIX B: Gaussian bunch

APPENDIX C: Studies in 1999

FROZEN