LIS Section Meeting

Optics solutions for the PS2 ring

Y. Papaphilippou

February $114^{\text {th }}, 2008$

Contributors

■ W. Bartmann, M. Benedikt, C. Carli, J. Jowett (CERN)

Acknowledgements

- G. Arduini, R. Garobi, B. Goddard, S. Hancock (CERN), Y. Senichev (FZ Jülich), D. Trbojevic (BNL)

Outline

- Motivation and design constraints for PS2

■ FODO lattice

- Doublet/Triplet

■ Flexible (Negative) Momentum Compaction modules
\square High-filling factor design
\square Tunability and optics’ parameter space scan"Resonant" NMC ring
\square Hybrid solution
■ Comparison and perspectives

Motivation - LHC injectors' upgrade

■ Upgrade injector complex.
\square Higher injection energy in the SPS $=>$ better SPS performance
\square Higher reliability

(LP)SPL: (Low Power) Superconducting Proton Linac (4-5 GeV) PS2: High Energy PS (~5 to $50 \mathrm{GeV}-0.3 \mathrm{~Hz}$) SPS+: Superconducting SPS (50 to 1000 GeV) SLHC: "Super-luminosity" LHC (up to $10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$) DLHC: "Double energy" LHC (1 to $\sim 14 \mathrm{TeV}$)

Design and optics constraints for PS2 ring

- Replace the ageing PS and improve options for physics
\square Provide 4×10^{11} protons/bunch for LHC (vs. 1.7×10^{11})Higher intensity for fixed target experiments
- Integration in existing CERN accelerator complex
- Versatile machine:
\square Many different beams and bunch patterns
\square Protons and ions

Basic beam parameters	PS	PS2
Injection kinetic energy [GeV]	1.4	4
Extraction kinetic energy [GeV]	13/25	50
Circumference [m]	200π	1346
Transition energy [GeV]	6	$\sim 10 / 10 \mathrm{i}$
Maximum bending field [T]	1.2	1.8
Maximum quadrupole gradient [T / m]	5	17
Maximum beta functions [m]	23	60
Maximum dispersion function [m]	3	6
Minimum drift space for dipoles [m]	1	0.5
Minimum drift space for quads [m]		0.8
Maximum arc length [m]		510

FODO Ring

- Conventional Approach:
\square FODO with missing dipole for dispersion suppression in straights
$\square 7$ LSS cells, 22 asymmetric FODO arc cells, 2 dipoles per half cell, 2 quadrupole families
\square
Phase advance of $\mathbf{8 8}^{\circ}, \gamma_{\text {tr }}$ of $\mathbf{1 1 . 4}$7 cells/straight and 22 cells/arc -> in total 58 cells
$\square \mathrm{Q}_{\mathrm{H}, \mathrm{V}}=14.1$-14.9
\square Alternative design with matching section and increased number of quadrupole familiesTransition jump scheme under study

Dispersion suppressor and straight section

Cell length [m]	23.21
Dipole length [m]	3.79
Quadrupole length [m]	1.49
LSS [m]	324.99
Free drift [m]	10.12
\# arc cells	22
\# LSS cells:	7
\# dipoles:	168
\# quadrupoles:	116
\# dipoles/half cell:	2

07/02/08
Optics solutions for the PS2 ring
8

Doublet and Triplet arc cells

- Advantages
\square Long straight sections and small maximum ß's in bending magnets (especially for triplet)
- Disadvantage

\square
High focusing gradients

Flexible Momentum

Compaction Modules

- Aim at negative momentum compaction (NMC modules), i.e.

$$
a_{c}=\frac{1}{C} \oint \frac{D(s)}{\rho} d s<0
$$

- Similar to and inspired from existing modules
(SY. Lee et al, PRE, 1992, J-PARC high energy ring)
- First approach
\square Module made of three FODO cells
\square Match regular FODO to 90° phase advance
\square Reduced central straight section without bends
\square Re-matched to obtain phase advance (close to three times that of the FODO, i.e. 270°)
- Disadvantage: Maximum vertical β above 80 m

NMC modules with high filling factor

- Improve filling factor: four FODO per module
- Dispersion beating excited by "kicks" in bends
- Resonant behavior: total phase advance $<2 \pi$
- Large radii of the dispersion vector produce negative momentum compaction
- High phase advance is necessary

Improving the high filling factor FMC

- The "high-filling" factor arc module
\square Phase advances of $\mathbf{2 8 0} \mathbf{0}^{\circ}, \mathbf{3 2 0}{ }^{\circ}$ per module
$\square \gamma_{t}$ of 8.2i
\square Four families of quads, with max. strength of $0.095 \mathrm{~m}^{-2}$
\square Max. horizontal beta of 67 m and vertical of 43 m
\square Min. dispersion of -6 m and maximum of 4 m
\square Chromaticities of -1.96,-1.14
\square Total length of 96.2 m
- Slightly high horizontal β and particularly long module, leaving very little space for dispersion
suppressors and/or long straight sections

- Reduce further the transition energy by moving bends towards areas of negative dispersion and shorten the module

Alternative NMC module

- 1 FODO cell with $4+4$ bends and an asymmetric low-beta triplet
\square Phase advances of $\mathbf{3 2 0}{ }^{\circ}, \mathbf{3 2 0}{ }^{\circ}$ per module
$\square Y_{t}$ of 6.2i
\square Five families of quads, with max. strength of $\mathbf{0 . 1} \mathrm{m}^{-2}$
\square Max. beta of 58 m in both planes
\square Min. dispersion of -8 m and maximum of 6 m
\square Chromaticities of -1.6,-1.3
\square Total length of 90.56 m
- Fifth quad family not entirely necessary
- Straight section in the middle can control Y_{t}
- Phase advance tunable between 240° and 330°

- Main disadvantage the length of the module, giving an arc of around 560 m (5 modules + dispersion suppressors), versus 510m for the FODO cell arc

The "short" NMC module

- Remove middle straight section and reduce the number of dipoles
- 1 asymmetric FODO cell with $4+2$ bends and a lowbeta doublet
\square Phase advances of $272^{\circ}, 260^{\circ}$ per module
$\square \mathrm{Y}_{\mathrm{t}}$ of $\mathbf{1 0 i}$
\square Five families of quads, with max. strength of $0.1 \mathrm{~m}^{-2}$
\square Max. beta of around $\mathbf{6 0 m}$ in both planes
\square Min. dispersion of $\mathbf{- 2 . 3 m}$ and maximum of 4.6 m
\square Chromaticities of -1.1,-1.7
\square Total length of 71.72 m

- Considering an arc of 6 modules +2 dispersion suppressors of similar length, the total length of the arc is around 510 m

- Phase advance tunable between 240° and 420° in the horizontal and between $\mathbf{2 5 0}{ }^{\circ}$ and $\mathbf{3 2 0}{ }^{\circ}$ in the vertical plane

Transition energy versus horizontal phase advance

- Almost linear dependence of momentum compaction with dispersion min/max values
- Higher dispersion variation for γ_{t} closer to 0
- Smaller dispersion variation for higher Y_{t}

Transition energy versus chromaticity
 30

10

- Higher in absolute horizontal chromaticities for smaller transition energies
- Vertical chromaticities between -1.8 and -2 (depending on vertical phase advance)
- Main challenge: design of dispersion suppressor and matching to straights

Dispersion suppressor cell

- Similar half module as for the NMC with $2+5$ dipoles (instead of $2+4$)
- Using 4 families of quads to suppress dispersion, while keeping beta functions "small"
- Maximum beta of 70 m
- Total length of 77.31 m
- Adding a straight section with 7 FODO cells, using 2 matching quadrupoles
\square Straight drift of 9.5 mTunes of $(12.1,11.4)$$\gamma_{t}$ of $12.9 i$13 families of quads, with max. strength of $0.1 \mathrm{~m}^{-2}$
\square Max. beta of around 71m in horizontal and 68 m in the vertical plane
\square Dispersion of -2.3 m and maximum of 4.6 m
\square Chromaticities of -16.7, -25.8
Total length of $\mathbf{1 3 4 6 m}$

The resonant NMC module

- 1 symmetric FODO cell with $3+3$ bends and a low-beta doublet

\square Phase advances of $315^{\circ}, 270^{\circ}$ per module
- $8 \times 315^{\circ}->7 \times 2 \pi$
- $8 \times 270^{\circ}->6 \times 2 \pi$
$\square Y_{t}$ of $5.71!!!$
\square Four families of quads, with max. strength of $0.1 \mathrm{~m}^{-2}$
\square Max. beta of around 59 m in both planes
\square Min. and max. dispersion of -8.5 m and 8.9 m
\square Chromaticities of -1.5,-1.7Length of 1.2 m between QF and D

Suppressing dispersion

The "resonant" NMC arc

- 8 NMC modules
- Total horizontal phase advance multiple of 2π
- Maximum β of 59 m
- Total length of $\mathbf{5 1 8 m}$

- Adding a straight section with 7 FODO cells, using 2 matching quadrupoles
\square Straight drift of 9.4 m
\square Tunes of $(16.8,9.8)$
$\square Y_{t}$ of 10.7 i
$\square 8$ families of quads, with max. strength of $0.1 \mathrm{~m}^{-2}$
- Extra families for phase advance flexibility in the straight
\square Max beta of around 60.5 m in horizontal and vertical plane
\square Min. and max. dispersion of $\mathbf{8 . 5 m}$ and 8.9 m
\square Chromaticities of -21.7, -19.8

The "resonant" NMC ring II

\square Total length of 1346 m

An optimized NMC module

- 1 asymmetric FODO cell with $4+3$ bends and a low-beta doubletPhase advances of $316^{\circ}, 300^{\circ}$ per module
$\square \gamma_{t}$ of $5.6 \mathrm{i}!!!$
\square Four families of quads, with max. strength of $0.1 \mathrm{~m}^{-2}$
\square Max. beta of around 54 m and 58 m
\square Min. and max. dispersion of $\mathbf{- 7 . 8 m}$ and $\mathbf{1 0 . 2 m}$
\square Chromaticities of -1.3,-2
\square Total length of 73 m

D. $(m), D_{x}$
Suppressing dispersion

- Hybrid approach:
\square Phase advance close to multiple of 2π and 2 extra quad families ${ }_{26}$

The arc III

- 7 NMC modules
- Phase advances of $5.8 \times 2 \pi$ and $5.5 \times 2 \pi$
- Maximum β of 60 m
- Total length of 511 m
- Adding a straight section with 7 FODO cells, using 2 matching quadrupoles
\square Straight drift of 9.5 m
\square Tunes of $(13.8,13.4)$
$\square Y_{t}$ of 10.9 i
$\square 10$ families of quads, with max. strength of $0.1 \mathrm{~m}^{-2}$
- Extra families for phase advance
flexibility in the straight
\square Max beta of around 58 m in horizontal and 56 m in the vertical plane
\square Min. and max. dispersion of $\mathbf{- 8 . 2 m}$ and $\mathbf{1 0 . 2 m}$
\square Chromaticities of -18.7, -29.5

The NMC ring III

D. $(m), D_{x x}$
\square Total length of $\mathbf{1 3 4 6 m}$

Comparison

Parameters	RING I	RING II	RING II
Transition energy	12.9 i	10.7 i	10.9 i
Number of dipoles	172	192	196
Dipole length [m]	3.45	3.11	3.03
Arc module length [m]	71.7	64.8	73
Number of arc modules	$5+2$	8	7
Arc length [m]	513.5	518	511
Straight section drift length [m]	9.5	9.4	9.5
Quadrupole families	13	8	10
Arc phase advance [2m]	$5.2 / 5.2$	$7 / 6$	$5.8 / 5.5$
Maximum beta functions [m]	$71 / 68$	$61 / 61$	$58 / 56$
Maximum dispersion function [m]	4.7	8.9	10.2
Tunes	$12.1 / 11.4$	$16.8 / 9.8$	$13.8 / 13.4$
Chromaticity	$-16.7 /-26.8$	$-21.7 /-19.8$	$-18.7 /-29.5$

Summary

- Different lattice types for PS2 optics investigated
\square FODO type lattice a straightforward solution
- Challenge: Transition crossing scheme
\square NMC lattice possible alternative
- No transition crossing
- Challenge: low imaginary transition energy
- Perspectives:
\square Complete the lattice design including chromaticity correction and dynamic aperture evaluation
\square Detailed comparison based on performance with respect to beam losses
- Collimation system
- Non-linear dynamics
- Collective effects

