PSB orbit correction (II)

continuation from the presentation in the LIS Meeting 11.02.2008
M. Chanel, B. Mikulec, G. Rumolo and R. Tomás

Thanks to T. Dobers and his team

- Summary of 2007 studies and alignment surveys during shut-down
- 2008 orbit measurements at the PSB and second iteration for H correction
- Results

Summary of last year's studies

\Rightarrow Following M. Chanel's proposal, PSB orbits were measured in 2007 and the data were used during the shutdown to find out which QDEs could be displaced and/or tilted to improve both the horizontal and vertical orbits.
\Rightarrow The correction algorithm took into account the way the displacements and/or tilts of the QDs would affect each ring
\Rightarrow The ring by ring displacements of the QDs $\left(\Delta \mathrm{x}_{\mathrm{i}}, \Delta \mathrm{y}_{\mathrm{i}}\right)$ are not independent in the PSB, because all the QDs share the same support. The independent variables are the displacement and tilt angle of the full block ($\Delta x, \Delta y, \alpha)$.
\Rightarrow It could find separately the best correctors in H and V plane and evaluate the goodness of the correction

Summary of last year's studies

\Rightarrow First proposal: move 7 correctors in total, 6 for the horizontal plane (QD2, QD8, QD9, QD10, QD13, QD15) and 3 for the vertical plane (two in common with the horizontal plane, QD8, QD9, QD16).
\Rightarrow Good horizontal correction but lose a few $\%$ in the vertical plane with respect to using the 3 best correctors

Figure 12: Corrections calculated using the 6 strongest correctors for the horizontal correction and 3 correctors for the vertical correction (two strongest ones and a third common to the horizontal plane). Data from ring 3 were not considered in this analysis.

Summary of last year's studies

Summary of last year's studies

$\Rightarrow \mathrm{Re}$-calculate the strongest correctors and the optimum correction in the vertical plane using the corrected PU data. While QD16 and QD7 remain the strongest correctors to achieve a good vertical orbit correction, QD6 appears to be the third strongest.
\Rightarrow The best 3 correctors (QD6, QD7, QD16) give residuals up to $20-30 \%$ better than the 3 correctors proposed in the previous scheme and allow gaining nearly up to 1 mm in the peak-to-peak orbit.

Figure 13: Corrections calculated using the 6 strongest correctors for the horizontal correction and 3 correctors for the vertical correction (two strongest ones and a third common to the horizontal plane). Data from ring 3 were not considered in this analysis.

Summary of last year's studies (requested changes)

Horizontal movement of QD's (positive values go towards the outside of the ring; see our sign convention in the attached file):
QD2: +0.80 mm
QD8: -1.07 mm
QD9: +0.40 mm
QD10: -1.07 mm
QD13: +0.93 mm
QD15: +0.64 mm
Tilt (the reference ring is the bottom ring 1; positive tilt goes towards the outside of the ring):
QD2: +0.80 mrad
QD8: - -.50 mrad
QD9: -1.79 mrad
QD10: -0.98 mrad
QD13: +0.84 mrad
Vertical movement of QD's (positive values go upwards); 3 magnets QD6: - 0.35 mm
QD7: -0.4 mm
QD16: +0.43 mm
The correction therefore affects 9 different magnets.

Summary of last year's studies (requested changes)

Positions measured after voluntary displacements: the offsets are much larger than requested.

Summary of last year's studies (requested changes)

Positions measured after voluntary displacements: they match with the requested offsets within tolerance

Orbit measurements on the 28.04.2008 and 04.05.2008
\Rightarrow User: MDPSB; copy of NORMHRS (sieve, $\sim 5 \mathrm{e} 11 \mathrm{p} /$ ring, vertical correction dipoles $=0$, flat $\mathrm{C} 02 / \mathrm{C} 04$ functions at measurement points)
$\Rightarrow 6$ measurement sets

	Energy (MeV)	Q_{x}	Q_{y}
301WP1	63	4.172	4.230
301WP2	63	4.083	4.131
301 WP 3	63	4.212	4.304
301WP4	63	4.279	4.583
500WP1	403	4.163	4.234
790WP1	1377	4.169	4.255

Orbit measurements: April 2008 versus November 2007
\Rightarrow Examples of measured orbits

$c 500 \mathrm{Q}_{\mathrm{x}}=4.17 \mathrm{Q}_{\mathrm{y}}=4.23$ Ring1 plane V

Orbit measurements: April 2008 versus November 2007

\Rightarrow Overview on rms and peak-to-peak orbit change (horizontal plane)

2007

2008

max-min for horizontal PSB orbit data

Orbit measurements: April 2008 versus November 2007

\Rightarrow Overview on rms and peak-to-peak orbit change (vertical plane)

2007

2008

Orbit measurements: April 2008

\Rightarrow We want to use the 2008 orbit measurements to try to get a better orbit correction
\Rightarrow This time we also knew the horizontal offsets of the PUs

Orbit measurements: April 2008

\Rightarrow Based on the 2008 orbit measurements, possible further corrections were calculated
\Rightarrow The strongest correctors were QDE5 and QDE12 in the horizontal plane, QD10 and QD11 in the vertical plane

However:

- the required vertical displacements turned out to be too small to be implemented
- we decided to try to improve the horizontal orbit correction.

Orbit measurements: 2 May 2008 versus 28 April 2008

\Rightarrow QDE5 and QDE12 were moved on the 30th April. Orbits were re-measured on the 2 May

Preliminary

- The horizontal orbit (peak-to-peak) appears in general improved by about a factor 1.5-2
- In particular, the orbit of Ring 3 has become like that for the other rings
- The vertical orbit has not changed, as expected.

