PSB orbit correction (II)

continuation from the presentation in the LIS Meeting 11.02.2008

M. Chanel, B. Mikulec, G. Rumolo and R. Tomás Thanks to T. Dobers and his team

- Summary of 2007 studies and alignment surveys during shut-down
- 2008 orbit measurements at the PSB and second iteration for H correction
- Results

 \Rightarrow Following M. Chanel's proposal, PSB orbits were measured in 2007 and the data were used during the shutdown to find out which QDEs could be displaced and/or tilted to improve both the horizontal and vertical orbits.

 \Rightarrow The correction algorithm took into account the way the displacements and/or tilts of the QDs would affect each ring

 \Rightarrow The ring by ring displacements of the QDs ($\Delta x_i, \Delta y_i$) are not independent in the PSB, because all the QDs share the same support. The independent variables are the displacement and tilt angle of the full block ($\Delta x, \Delta y, \alpha$).

 \Rightarrow It could find separately the best correctors in H and V plane and evaluate the goodness of the correction

$$\begin{pmatrix} \Delta L \cdot \vec{\alpha} \\ \vec{\Delta x} \\ \vec{\Delta y} \end{pmatrix} = -\left(\bar{\mathcal{R}} \cdot \bar{\mathbf{K}}\right)^{-1} \cdot \begin{pmatrix} \vec{\Delta x_{o1}} \\ \vec{\Delta y_{o1}} \\ \vec{\Delta x_{o2}} \\ \vec{\Delta y_{o2}} \\ \vec{\Delta x_{o3}} \\ \vec{\Delta y_{o3}} \\ \vec{\Delta y_{o4}} \end{pmatrix}$$

 \Rightarrow First proposal: move 7 correctors in total, 6 for the horizontal plane (QD2, QD8, QD9, QD10, QD13, QD15) and 3 for the vertical plane (two in common with the horizontal plane, QD8, QD9, QD16).

 \Rightarrow Good horizontal correction but lose a few % in the vertical plane with respect to using the 3 best correctors

Figure 12: Corrections calculated using the 6 strongest correctors for the horizontal correction and 3 correctors for the vertical correction (two strongest ones and a third common to the horizontal plane). Data from ring 3 were not considered in this analysis.

 \Rightarrow Re-calculate the strongest correctors and the optimum correction in the vertical plane using the corrected PU data. While QD16 and QD7 remain the strongest correctors to achieve a good vertical orbit correction, QD6 appears to be the third strongest.

 \Rightarrow The best 3 correctors (QD6, QD7, QD16) give residuals up to 20-30% better than the 3 correctors proposed in the previous scheme and allow gaining nearly up to 1 mm in the peak-to-peak orbit.

Figure 13: Corrections calculated using the 6 strongest correctors for the horizontal correction and 3 correctors for the vertical correction (two strongest ones and a third common to the horizontal plane). Data from ring 3 were not considered in this analysis.

Summary of last year's studies (requested changes)

Horizontal movement of QD's (positive values go towards the outside of the ring; see our sign convention in the attached file): QD2: +0.80 mm QD8: -1.07 mm QD9: +0.40 mm QD10: -1.07 mm QD13: +0.93 mm QD15: +0.64 mm

Tilt (the reference ring is the bottom ring 1; positive tilt goes towards the outside of the ring): QD2: +0.80 mrad QD8: -0.50 mrad QD9: -1.79 mrad QD10: -0.98 mrad QD13: +0.84 mrad

Vertical movement of QD's (positive values go upwards); 3 magnets QD6: -0.35 mm QD7: -0.4 mm QD16: +0.43 mm

The correction therefore affects 9 different magnets.

Summary of last year's studies (requested changes)

Radial deviations - PSB 2008 Towards PSB inside QDE2,8,9,10,13,15 displaced! 0.005 0.004 QF0811 **QFO1611** 0.003 UES812QFO1015 **IB110** 0.002 Deviation [m] MB1310 CRF701 0.001 0.000 80 160 140 60 📥 -0.001 QDE1413 QF0711 QFO1415 -0.002 **UES1112 UE\$412 UES612 UE\$1312** -0.003 -0.004 Cumulated distance [m] Ecarts des points faisceau 21/04/08
Ecarts des points faisceau 18/04/08

Positions measured after voluntary displacements: the offsets are much larger than requested.

Summary of last year's studies (requested changes)

Positions measured after voluntary displacements: they match with the requested offsets within tolerance

Orbit measurements on the 28.04.2008 and 04.05.2008

 \Rightarrow <u>User:</u> MDPSB; copy of NORMHRS (sieve, ~5e11 p/ring, vertical correction dipoles = 0, flat C02/C04 functions at measurement points)

\Rightarrow 6 measurement sets

	Energy (MeV)	Q _x	Q _y
301WP1	63	4.172	4.230
301WP2	63	4.083	4.131
301WP3	63	4.212	4.304
301WP4	63	4.279	4.583
500WP1	403	4.163	4.234
790WP1	1377	4.169	4.255

Orbit measurements: April 2008 versus November 2007

Orbit measurements: April 2008 versus November 2007

 \Rightarrow Overview on rms and peak-to-peak orbit change (horizontal plane)

2008

Orbit measurements: April 2008 versus November 2007

 \Rightarrow Overview on rms and peak-to-peak orbit change (vertical plane)

2007

2008

Orbit measurements: April 2008

 \Rightarrow We want to use the 2008 orbit measurements to try to get a better orbit correction

 \Rightarrow This time we also knew the horizontal offsets of the PUs

Orbit measurements: April 2008

 \Rightarrow Based on the 2008 orbit measurements, possible further corrections were calculated

 \Rightarrow The strongest correctors were QDE5 and QDE12 in the horizontal plane, QD10 and QD11 in the vertical plane

However:

- the required vertical displacements turned out to be too small to be implemented
- we decided to try to improve the horizontal orbit correction.

Orbit measurements: 2 May 2008 versus 28 April 2008

 \Rightarrow QDE5 and QDE12 were moved on the 30th April. Orbits were re-measured on the 2 May

Preliminary

- The horizontal orbit (peak-to-peak) appears in general improved by about a factor 1.5-2
- In particular, the orbit of Ring 3 has become like that for the other rings
- The vertical orbit has not changed, as expected.