

Booster Beam Dynamics with Linac4 - Status Report

Christian Carli on behalf of many people contributing

- Introduction: PS Booster with Linac4
- H⁻ charge exchange Injection:
 - \Box Typical hardware for charge exchange injection
 - \square Why H⁻ charge exchange injection
 - \Box Active longitudinal Painting
 - \Box ORBIT Simulations of the Injection
- Benchmark efforts:
 - □ Measurements
 - \Box ACCSIM and first ORBIT simulations
- Work Plan

Introduction: PS Booster with Linac4

- PSB Injection at 50 MeV Intensity/Brightness bottleneck of the Complex:
 - □ PSB energy increased to 1400 MeV to mitigate direct space charge effects at PS injection
 - □ Bottleneck due to direct space charge in the Booster at low energy
- PS Booster with Linac4:
 - □ Goal: Increase of intensity within given normalized emittances by factor 2
 - Nominal LHC beam with PS single batch filling,
 - Save generation of ultimate LHC beam with PS double (and single ?) batch filling,
 - Decrease Losses and Increase of Number of Protons available
 - $\hfill\square$ Increase of PS Booster injection energy from 50 MeV to 160 MeV and $\beta\gamma^2$ by factor 2
 - Keep the same direct space charge tune shift, but double brightness
 - (Beam stays (a bit) longer with large direct space charge detuning)
 - \Box H⁻ charge exchange injection and Linac4 beam chopping:
 - Opens possibility for painting (in all three planes ?) and further gain in performance
 - \Box Losses and activation ??
 - Losses (on septum) inherent to conventional multiturn injection disappear
 - Losses (during times with large direct space charge detuning) at higher energy
- Next bottlenecks at transfers PS Booster \Rightarrow PS and PS \Rightarrow SPS ?!

Injection - typical Hardware for charge exchange injection

- Typical hardware ... the one proposed by B. Goddard and W. Weterings for the PSB
- Two independent bumps:
 - Blue: sum of chicane and (maximum) injection bump
 - Possibly offset with respect to injected beam
 - \Box Chicane (BS1 to 4)
 - BS2 Brings beams together ("replaces" septum)
 - Stays constant during injection
 - May collapse (fast in this proposal)
 - □ Injection (painting) bump
 - Linear decrease during injection
 - Allows shaping of distribution
- Stripping Foil (heating) converts H⁻ into protons
- Asymmetric chicane to improve interception of unstripped particles

19th May 2008

AB/ABP-LIS section meeting - Booster beam dynamic with Linac4s

Carli 3/1

Injection - Why H⁻ Charge Exchange Injection

- Recap of conventional multiturn Injection:
 - □ Septum brings injected beam close to circulating beam (separates beams in space)
 - □ Orbit Bump decreasing linearly in Time
 - \Box Typical mismatch of arriving beam (a factor 2 smaller than)

- H⁻ Charge Exchange Injection:
 - □ No septum separating the injected and circulating beam
 - □ No losses on septum (or foil) Different turns in same region of phase space

Options for H⁻ Injection Geometries

- Options for the Geometry of H⁻ Charge Exchange Injection:
 - □ Superposition of (fast) collapsing Chicane and Injection (Painting) Bump:
 - Scheme proposed for the PSB
 - Relatively small Injection Bump sufficient (extreme case: no Painting Bump at all at the FNAL Booster)
 - Fast Collapse of Chicane needed to move Beam away from Foil
 - □ Superposition of DC Chicane and larger Injection (Painting) Bump
 - Injection (Painting) Bump moves Beam sufficiently away from Foil
 - Chicane Collapse not needed to avoid Foil Hits
- Aperture/acceptance of PSB with Linac4:
 - □ Acceptance now defined by BeamScope Window (one single location)
 - □ Reduction of Acceptance:
 - Beams with the same normalized Emittance?
 - Gives more Freedom for Bumps and, thus, Injection Geometries
- Potential Limitations due to Stripping Foil:
 - □ Heating (Destruction of Foil), Blow-up due to Scattering

19th May 2008

Injection - active longitudinal Painting

• With Linac4: similar RF system than at present

- Double harmonic
 - fundamental h=1 and h=2 systems to flatten bunches
 - reduces maximum tune shifts

□ Injection with $d(B\rho)/dt = 10 \text{ Tm/s}$ (no need for injection with small ramp r;

 $\hfill\square$ Little (but not negligible) motion in longitudinal phase space.

- No way for painting from synchrotron motion (large harmonic numbers and RF voltages ruled out)
- > Need for active painting (aim: fill bucket homogeneously) and energy modulation

Injection - active longitudinal Painting

- Principle:
 - \Box Triangular energy modulation (slow, ~20 turns for LHC)
 - \square Beam on/off if mean energy inside a contur ~80% of acceptance
 - \square Nominal LHC: intensity with 41mA (!!!) after 20 turns
 - \Box High intensity: several and/or longer modulation periods
- Potential limitations: Linac4 jitter, debunching of Linac4 structure in Booster
- Dispersion at end of injection line: matched to PSB or D=0m ?

19th May 2008

AB/ABP-LIS section meeting - Booster beam dynamic with Linac4s C. Carli 7/12

Painting & tracking with ORBIT (1/3) Slides from M. Aiba with contributions from B. Goddard

Painting & tracking with ORBIT (2/3) Slides from M. Aiba with contributions from B. Goddard

- 160 MeV LHC type beam
- Painting and Tracking up to 12,500 turn with S.C.
- Macro particles 229,250 (dashed line) and 917,200 (solid line)
 - Larger number of particles, smaller blow-up

Benchmark Efforts -

Benchmark measur'ts (M. Chanel):

- High intensity $(10^{13} \text{ protons in one ring})$ beam at 160 MeV plateau
- Time evolution of emittances and intensity
- Long bunches (see fig.) tune shifts ~ 0.25
- Short bunches (second harmonic RF in phase) -> more losses
- Different working points

- Simulation (M. Martini) ACCSIM/ORBIT:
 - Only short times (computation time)
 - ACCSIM:
 - Overestimation of growth rates (except long bunches & hor. plane)
 - Insufficient statistics ?
 - \Box ORBIT (preliminary):
 - Blow-up rate comparable to measurements
- ACCSIM⇔ORBIT benchmark effort:
 - Moderate agreement only so far

19th May 2008

AB/ABP-LIS section meeting - Booster beam dynamic with Linac4s C. Carli

Work Plan

- Injection studies with validation & optimization of the painting scheme (well advanced):
 - □ Add Injection Foil (done), Acceleration and, possibly, machine imperfections
 - □ Tracking over longer times, check parameters to avoid numerics problems
 - Check filamentation of structure from injection especially with dispersion mismatch (seems o.k)
 - □ Limitations: Linac4 energy jitter, energy spread due to debunching in Booster (seems o.k.)
- Integration into the CERN Complex Elaborate detailed scenarios for all beams needed
- Check limitations of present Booster hardware:
 - □ Instabilities (existing damper with higher intensities)
 - \square (Beam loading problems of h=2 cavities for h=1 beams ... limitations ISOLDE beams ?)
- Beam Losses, Activation ("normal" losses, failure scenarios …):
 - □ Losses at Injection (Line and Ring) in collaboration with or by injection hardware team ?
 - □ Feasibility of rough Collimation System
- Possibly Simulations of Dynamics with strong direct Space Charge:
 - Are available Programs (e.g. ORBIT) viable Tools for such Studies ?
 (Most (all) accelerators with large direct space charge designed without detailed simulations)
 - Successful Completion of Benchmark mandatory !
 - □ (Slow) Blow-up and associated Losses, estimate/optimize Performance))