HIGHLIGHTS FROM THE ILCDROS8

WORKSHOP (CORNELL, 811 JULY 2008)
report by S. Calatroni and G. Rumolo, in CLIC Meeting 25.07.2008

» Goals of the workshop:

— 4% of the ILCDR series, on R&D projects necessary for the design
of the ILC Damping Rings:

e Low Emittance Tuning
 Electron cloud

— Kickoff meeting for CesrTA:

» Define the use of CesrTA as test facility for specific subjects related to
the above topics

e 4 Electron Cloud Working Sessions:
— Observations and measurements , ,
. . Giovanni
— Status of simulation tools
— Mitigation techniques _
— Experimental planning Sergio



From: M. Palmer, ILCDROS8 Introduction
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* (Goals for this workshop are two-fold:

— Continue the reorganization of the ILC Damping Rings Effort
for the ILC Technical Design Phase
» Re-scoped plan
— Bring together experts on low emittance tuning and electron
cloud effects to provide guidance and suggestions for the
CesrTA program

« 2 years of flexible experimental operations - need to maximize the
impact of the program

« Explore synergies with other electron cloud and low emittance tuning
groups

« Explore options for collaboration in the new budget environment

« Get input to ensure that we carry out the most important experiments

to provide a viable damping ring design when it is time to move
forward with the construction of a linear collider



From: M. Palmer & D. Rubin, CesrTA Introduction
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CesrTA Program II

+ Down to reconfigure CESR = CesrTA has just started
+ R&D Targets:
— Now through mid-2009
- Complete low emittance machine reconfiguration and upgrades

- Deploy and commission instrumentation needed for low emittance program

- Study EC growth studies in wigglers, dipoles, quadrupoles and drift regions
in CESRH

- Initial EC mitigation studies
— Mid-2009 through April 1, 2010

- Work towards progressively lower emittance operation
- Complete EC mitigation studies

« EC beam dynamics studies at the lowest achievable emittances
- Focus shifts much more heavily to experiment versus machine modifications




From: M. Palmer & D. Rubin, CesrTA Introduction
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From: M. Palmer & D. Rubin, CesrTA Introduction
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* Reconfigure CESR for ultra-low emittance

« Install positron xBSM optics line

- Start deployment of new BPM system

« Upgrade survey network and alignment hardware

« Install instrumented vacuum section in LO (CLEO IF)

Remove wigglers from arcs and re-deploy in LO

«  Deploy first instrumented wigglers in LO (27)

+ Install instrumented vacuum system in L3 (CUSB IP)

«  Deploy L3 diagnostic chicane?

« Deploy vacuum diagnostics with with wiggler
replacement chambers in CESR arcs

- Complete upgrade of transverse feedback system for 4
ns bunch spacings




A quick glance to the CesrTA target parameters...

Parameter Value
Energy 1.9-5.3 GeV
No. wigglers 12

B 21T

g, (geometric) 2.25 nm

&, (geometric)

20 pm (~40 nm normalized)

Q

0.59

Q, 0.63

Q, 0.070 - 0.098
G, 6.8 - 8.9 mm
AE/E 8.1-8.6x10%
Rf voltage 7.6 MV

Tyy ~ 60 ms

o, 6.2 x 104

N, 1-2x101%

Bunch spacing

Multiples of 4 ns and 14 ns




* Two years of CesrTA experimental program will
be mainly devoted to:
— Study of e-cloud formation and instability
— Development of low emittance tuning techniques

— Development of x-ray beam size monitor for ultra-low
emittance beams

o Additional possible studies
— Studies of emittance diluition
— lon effects
— 2D x-ray beam size camera upgrade
— Tests of ILC prototype hardware

— Further emittance reduction and further refinement of
tuning methodology



 Electron cloud studies that can be carried out at
CesrTA:

— Benchmark of modelling tools against experiments
(code validation)

— Verification of mitigation technigues (for ex. coating
behavior wrt synchrotron radiation)

— Development of diagnostics tools

e However

— Parameter range Is different from CLIC-DRs in some
respects (larger bunch spacing — lower line density,
lower energy, larger emittances)

— Similar scaled bunch parameters — Emittance growth
studies (due to e-cloud and/or space charge) maybe
useful



EC Working Group:

Measurement of Cloud and Effects on Beam




e Direct electron cloud observation:
— Measurements with the RFA (KEKB-LER, CesrTA)
— Microwave diagnostics (CERN-SPS, LBNL-PEPII)

* Indirect electron cloud observation (through the
effects on the beam)
— Tune shift along the batch (CesrTA, KEKB)

— Coherent:
« Single bunch instabilities (KEKB)
» Coupled bunch instabilities (CesrTA ?)

— Incoherent:
» Emittance growth (KEKB)



‘ Measurement kanazawa 1

" RFA type electron detectors with Faraday cup or
MCP or multi-strip anode are installed in KEKB
LER.
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‘ Measurement «:
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Cornell Thin RFA

From: S. Greenwald, RFA Development and Experimental
Measurements at Cesr-TA
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‘ Measurement santis 1

First data:

< Positron and electron beam

2 Direction of the beam.

2 Dependence on gap length and
beam/bunch current

2 Effects of vacuum chamber shapes | - \ * [
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From: K. Ohmi, Emittance growth due to electron cloud
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‘ Effects on Beam Fianagan 1
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EC Working Group:

Ecloud Simulations Group: Summary




ECLOUD, POSINST, CLOUDLAND

Talks in simulation session

/Dﬁugan: “Simulations at Cornell for CesrTA”
O J. Calvey: “Simulations for RFA studies at CesrTA”
= rittenden: “Simulations for withess bunch studies at CestTA
O |. Demma: “Build-up of efectrom cioud in DADNE in the presence of @
———solenoid field” I
—— O C. Celata: “Electron cloud cyclotron resonances for short bunches|in >

ic fields”

O K. Ohmi: “Stﬁ.ldy of electron cloud instabilities in CesrTA and KEKB’

POSINST ECLOUD



From: J. Calvey, Simulations at CesrTA
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From: J. Calvey, Simulations at CesrTA
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« Significantly variation between simulation programs
- Whether rediffused electrons are included
« How “true secondaries” and reflected electrons are weighted

« Probably main reason for discrepancies
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From: C. Celata, Cyclotron resonances in magnetic fields
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From: C. Celata, Cyclotron resonances in magnetic fields
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The high-field (no resonance) case shows the characteristic “stripes”
pattern seen in many experiments. At resonance the electrons are much
more widely distributed in x.



From: C. Celata, Cyclotron resonances in magnetic fields

3D Wiggler Calculations are Essential but
Challenging
Need to simulate 3D effects:

 ExBdrift=

e-s = different z (and B) = go in (and out) of resonance.
Resonance may affect more e-s, but each gains less energy

What is the sign of the effect?
e Use correct 3D field:
B, and B,, and variation in B, across the chamber.
Can do a lot with POSINST.
But it is hard:

 width of the resonances (ILC DR wigglers) ~ 10 G = need z resolution
~ 2 um! Grid cells asymmetric (350:1:1), leading to possible error, or
could instead make huge runs by resolving x and y to um scale.

e Time step must be ~1 x 10-1* s to resolve beam and cyclotron motion.



From: K. Ohmi, Coherent effects of electron clouds

Combination

* Av,>0 Av,~0 can be
realized, if Av,is
cancelled in two
distributions.




From: M. Furman, Summary of Working Session on Simulations

-, The 3 aspects of “benchmarking” (1)

O Do the code simulations agree with...
1.  Analytic resulis whenever they are available (algorithm validation)
2. Each other (benchmarking)
3. Measurements (code validation)

Iltem 2
v Understand the influence of rediffused electrons in build up codes

v Instability codes have been benchmarked several times against each other
(HEADTAIL, PEHTS, QuickPIC)

Item 3

v Many free input parameters, which can be used to fit the experimental
results

v" Long story of qualitative or semi-quantitative agreements (or predictions),
both for build up and instability simulations




From: M. Furman, Summary of Working Session on Simulations

eee) W Questions, odds and ends

= Why does Av keep increasing after the end of the train with e~ beams?
= plausibility argument exists; check it with simulated movies of the ecloud

= Why is Av, << Av,?
= | thought K. Ohmi provided the answer (ecloud distribution concentrated in the
midplane, or 2 clumps of electrons on either side of the center)

= This argument is operative if ecloud in the machine is dominated by dipoles
= Will the cyclotron resonances (C. Celata) be important in wigglers (3D field)?

= question will be answered by 3D simulations and RFA measurements in
wigglers

= Effect on e survival time due to ions (longer lifetime than otherwise
expected)

= suspicions at SPS and RHIC (7)
= Secondary ionization

= jonization X-section of residual gas by ~100 eV electrons is >> than for a ~GeV
beam

= Surface roughness of extruded Al surface has a preferential direction ==
SEY depends on (6,$), not simply 6
= but please: do not attempt an even more complicated SEY model
= instead, fit beam data with a few effective parameters a
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