

Topics studied and discussed recently

- □ Transfer of LHC type beams between PSB and PS
- \Box Lattice perturbations due to the injection chicane
- □ PSB injection steering
- Simulations of beam dynamics with strong direct space charge effects
- \Box Other topics
- Work Plan

Transfer of LHC type beams between PSB and PS

- Transfer of non-LHC beams: similar to present situation (same bunch structures, similar intensities ..)
- LHC type beams:
 - □ Single batch for nominal LHC operation:
 - Two bunches/ring and some h=1 RF to adjust spacing
 - Decreased longitudinal emittance and bunch lengths (increases ΔQ in PS)
 - Increase bunch length after transfer
 - First MDs in PSB started (A. Findlay)
 - 50 ns and 75 ns possible already now with single batch transfer !?
 - □ Single batch (with exotic schemes?) for ultimate LHC operation:

- h_{PS} =14 and h_{PSB} =3 scheme difficult (three RF systems in PSB ...)
- Schemes proposed (need for batch compression $h_{PS}=20 \rightarrow 21$)
 - \square h_{PS}=10 and h_{PSB}=2
 - \square h_{PS}=5 and h_{PSB}=1 (incompatible with frequency range of PS RF system)

22nd September 2008

Status of Linac4-PSB Studies

Lattice perturbations due to the injection chicane

- Limitation at FNAL (reported by F. Ostiguy) and other machines?
- "Chicane" (i.e. an orbit bump with one magnet to join injected and circulating beams) needed for charge exchange injection into the PSB
 - □ Rectangular bends generate vertical focusing and perturb lattice (vertical tune close to halfinteger)

□ Correction difficult:

- Sector bend? (deflections change with time, perturbation in both planes)
- Correction with quadrupoles (many ... or excite in horizontal plane)
- Actions to mitigate:
 - □ Reduce deflection angles (asymmetric chicane ruled out?)
 - □ Make dipoles as long as possible
 - □ Sufficient distance from half-integer

22nd September 2008

Status of Linac4-PSB Studies

PSB Injection Steering

- Two steerers/plane and ring to adjust position and angle at the injection point disappeared in proposal for Linac4
 - □ Needed for operation
 - Installation further upstream: increase strength

- Analysis of present situation and extrapolation to Linac4:
 - Correction matrix used in operations found wrong (now corrected)
 - Last steerer at present position: strengths about o.k.
 - Steerer further upstream: Increase strength
 - □ (anyhow probably new magnet)

Simulations

- Injection (mainly by M. Aiba with contributions from B. Goddard):
 - □ Modeling of injection chicane (and bump) as thin elements, longitudinal and transverse painting ... but zero Bdot
 - \Box Dispersion mismatch at injection found not to be a concern
 - □ Slow transverse blow-up (at limit of what is acceptable) possibly dominated by artefacts due to numerics
 - □ No investigations on influence of transverse matching yet
- Benchmark: Simulations vs observations (Michels)
 - □ Blow-up rates agree within a factor two or so for first ORBIT runs
 - □ Refine simulations (# macropart's, binning ...) and measurements
 - Disagreement for ACCSIM (F. Jones interested to check in contact with Michel)
- (A. Adelmann from PSI will present his code in November)
- (Computing: nodes from new cluster for PSB beam dynamics from Linac4 budget)

22nd September 2008

Status of Linac4-PSB Studies

C. Carli

Other topics

- Apertures in region distributing the Linac beam to PSB rings:
 - □ Optics had not been optimised (increase of distributor kicks to solve)
 - Better optics design by Alessandra and her team
 - □ (improvement of geometry possible ??)
- Instabilities :
 - □ Head-tail modes (azimuthal mode 3) in ring 4 observed by PSB operations team
- Generation of exotic (e.g. very low intensity) beams:
 - □ List of present PSB beams compiled by Bettina
 - $\hfill\square$ Develop scenarions to generate them with Linac4
- Collimation (rough):
 - P. Jackson (will start as doctoral student in April) started to look into it No results yet for the moment.
 - $\hfill\square$ Issue: find a scheme within the given lattice of an existing machine
 - □ Collimator may reduce acceptance by a factor ~2 with higher injection energy (easier to intercept proton before hit of the vacuum chamber)

Work Plan -

CERN

copy of a transparency from LIS meeting on 19th May

- Injection studies with validation & optimization of the painting scheme (well advanced):
 - □ Add Injection Foil (done), Acceleration and, possibly, machine imperfections
 - □ Tracking over longer times, check parameters to avoid numerics problems
 - □ Check filamentation of structure from injection especially with dispersion mismatch (seems o.k)
 - □ Limitations: Linac4 energy jitter, energy spread due to debunching in Booster (seems o.k.)
- Integration into the CERN Complex Elaborate detailed scenarios for all beams needed
- Check limitations of present Booster hardware:
 - □ Instabilities (existing damper with higher intensities)
 - \square (Beam loading problems of h=2 cavities for h=1 beams ... limitations ISOLDE beams ?)
- Beam Losses, Activation ("normal" losses, failure scenarios ...):
 - □ Losses at Injection (Line and Ring) in collaboration with or by injection hardware team ?
 - □ Feasibility of rough Collimation System
- Possibly Simulations of Dynamics with strong direct Space Charge:
 - Are available Programs (e.g. ORBIT) viable Tools for such Studies ? (Most (all) accelerators with large direct space charge designed without detailed simulations)
 - Successful Completion of Benchmark mandatory !
 - □ (Slow) Blow-up and associated Losses, estimate/optimize Performance))

