Neutrino Production: Beta Beams

Elena Wildner, LIS meeting 24/03/09

Layout of talk

What is a beta beam? The EURISOL Design Study Overall layout Specific challenges & shortfalls FP7 The collaborators' tasks Decay Ring RF The Production Ring Radio Protection The Parameter Data Base

Team Work

- Many Collaboration Institutes, CNRS, CEA, LPSC, UCL...
- Mats Lindroos, the driving force
- Michael Benedikt, the FP6 task leader
- Adrian Fabich, parameters and organizing
- Steve Hancock, the decay ring RF
- …and many others

Beta-beam Basics

Aim: production of (anti-)neutrino beams from the beta decay of radio-active ions circulating in a storage ring (race track).

- Similar concept to the neutrino factory, but parent particle is a beta-active isotope instead of a muon.
- Both neutrinos and antineutrinos are needed
- Beta-decay at rest
 - v-spectrum well known from electron spectrum
 - Reaction energy Q typically of a few MeV (neutrino energy)
 - Only electron (anti-)neutrinos
- Accelerated parent ion to relativistic γ_{max}
 - Boosted neutrino energy spectrum: $E_{v} \leq 2\gamma Q$
 - Forward focusing of neutrinos: $\theta \le 1/\gamma$

Choice of radioactive ion species

- Beta-active isotopes
 - Distance from stability
 - Production rates
 - Life time
- Reasonable lifetime at rest
 - If too short: decay during acceleration
 - If too long: low neutrino production
 - Optimum life time given by acceleration scenario and neutrino rate optimization
 - In the order of a second

Low Z preferred

- Minimize ratio of accelerated mass/charges per neutrino produced
- One ion produces one neutrino.
- Reduce space charge problems

To be deer calmente.																	
Isotope	<mark>A/Z</mark>	T ½ (s)	Qp g.s to g.s	Q _p eff	Ep av (MeV)	E _v av (MeV)	lons/bun	ch Deca rate	y	rate / E _v (s ⁻¹)	av						
°He ⁸ He	3.0 4.0	0.80 0.11	3.5 10.7	3.5 9.1	1.57 4.35	1.94 4.80	5·10 ¹² 5·10 ¹²	Isotope	<mark>A/Z</mark>	T ½ (s)	Q ₀ g.s. to g.s. (MeV)	Q ₀ eff (MeV)	E _{o av} (MeV)	E _v av (MeV)	Ions/bunch	Decay rate (s ⁻¹)	rate / E _{v av} (s ⁻¹)
⁸ Li ⁹ Li	2.7 3.0	0.83 0.17	16.0 13.6	13.0 11.9	6.24 5.73	6.72 6.20	3·10 ¹² 3·10 ¹²	⁸ B ¹⁰ C	1.6 1.7	0.77 19.3	17.0 2.6	13.9 1.9	6.55 0.81	7.37 1.08	2·10 ¹² 2·10 ¹²	2·10 ¹⁰ 6·10 ⁸	2·10 ⁹ 6·10 ⁸
¹¹ Be ¹⁵ C	2.8	13.8 2.44	11.5 9.8	9.8 6.4	4.65	5.11 3.55	$3 \cdot 10^{12}$ $2 \cdot 10^{12}$	¹⁴ O ¹⁵ O	1.8 1.9	70.6 122	4.1 1.7	1.8 1.7	0.78 0.74	1.05	$1 \cdot 10^{12}$ $1 \cdot 10^{12}$	1.10^{8} 7.10^{7}	$1 \cdot 10^{8}$ $7 \cdot 10^{7}$
¹⁶ C ¹⁶ N	2.7 2.3	0.74	8.0 10.4	4.5 5.9	2.05	2.46 1.33	$2 \cdot 10^{12}$ $1 \cdot 10^{12}$	¹⁸ Ne ¹⁹ Ne	1.8	1.67	3.3	3.0	1.50	1.52	1.10^{12} 1.10^{12}	4.10^9 4.10^8	3·10 ⁹ -
¹⁷ N ¹⁸ N	2.4 2.6	4.17 0.64	8.7 13.9	3.8 8.0	1.71 5.33	2.10 2.67	$1 \cdot 10^{12}$ $1 \cdot 10^{12}$	²¹ Na ³³ · 2·10	1.9	22.4 6.10	2.5 Mee	2.5 ting	1.10	1.41	9·10 ¹¹	3·10 ⁸	2·10 ⁸

EURISOL DS

5

What is important for the experiment?

- Gamma 100 chosen for CERN accelerator complex
- The atmospheric neutrino background is large at 500 MeV, the detector can only be open for a short moment every second, unfortunate for an otherwise good choice...
 - The decay products move with the ion bunch which results in a bunched neutrino beam

Detector only "open" when neutrinos arrive

- □ Low duty cycle short and few bunches in decay ring
- Accumulation in decay ring to make use of as many decaying ions as possible from each acceleration cycle

Recall of Beta Beam scenario, FP6

Detector in the Frejus tunnel

The EURISOL scenario

- Based on CERN boundaries
- Ion choice: ⁶He and ¹⁸Ne
- Based on existing technology and machines
 - Ion production through ISOL technique
 - Bunching and first acceleration: ECR, LINAC
 - Rapid cycling synchrotron
 - Use of existing machines: PS and SPS
- Relativistic gamma is 100 for both ions
 - SPS allows maximum of 150 (6 He) or 250 (18 Ne)
 - Gamma choice optimized for physics reach
- Opportunity to share a Mton Water Cherenkov detector with a CERN super-beam, proton decay studies and a neutrino observatory

Achieve an annual neutrino rate of

- 2.9*10¹⁸ anti-neutrinos from ⁶He
 - 1.1 10¹⁸ neutrinos from ¹⁸Ne
- The EURISOL scenario will serve as reference for further studies and developments: Within Eurov we will study ⁸Li and ⁸B

top-down approach

Machine cycle

Baseline version:

- Production
 ⁶He, ¹⁸Ne
- ECR, Linac and RCS
 Cycling at 10 Hertz

cycle of ⁶He 1 $t_{cycle} = 6s$ magnet cycle (abstract) 0.8 SPS 0.6 0.4 \mathbf{PS} 0.2 RCS 10 12 14 2 4 6 8 t[s] Normalization

Single bunch intensity to maximum/bunch Total intensity to total number accumulated in RCS

- Accumulation in the PS
 - Accumulation of 20 RCS bunches (~2 seconds)
- Acceleration through PS and SPS as fast as possible

 γ_{top} = 100 for both isotopes
- Injection into decay ring
 - Merging with circulating bunches
 - Every 6 s for ⁶He and every 3.6 s for ¹⁸Ne

Ion intensities

Cycle optimized for neutrino rate.

- 30% of first ⁶He bunch injected are reaching decay ring
- Overall only 50% (⁶He) and 80% (¹⁸Ne) reach decay ring
- Normalization
 - Single bunch intensity to maximum/bunch
 - Total intensity to total number accumulated in RCS

- Converter technology preferred to direct irradiation (heat transfer and efficient cooling allows higher power compared to insulating BeO).
- ⁶He production rate is $\sim 2x10^{13}$ ions/s (dc) for ~ 200 kW on target.

Projected values, known x-sections!

¹⁸Ne (Direct Production)

Geometric scaling

- Producing 10¹³ ¹⁸Ne could be possible with a beam power (at low energy) of 2 MW (or some 130 mA ³He beam on MgO).
- To keep the power density similar to LLN (today) the target has to be 60 cm in diameter.
- To be studied:
 - Extraction efficiency
 - Optimum energy
 - Cooling of target unit
 - High intensity and low energy ion linac
 - High intensity ion source

S. Mitrofanov and M. Loislet at CRC, Belgium

⁶He (Two Stage ISOL)

- Studied ⁹Be(n,α)⁶He, ¹¹B(n,α)⁸Li and ⁹Be(n,2n)⁸Be production
- For a 2 mA, 40 MeV deuteron beam, the upper limit for the ⁶He production rate via the two stage targets setup is ~6.10¹³ atoms per second.

T.Y.Hirsh, D.Berkovits, M.Hass (Soreq, Weizmann I.)

Ion production

- ISOL method at 1-2 GeV (200 kW)
 - □ >1 10¹³ ⁶He per second
 - <8 10¹¹ ¹⁸Ne per second
 - Studied within EURISOL
- Direct production
 - □ >1 10¹³ (?) ⁶He per second
 - 1 10¹³ ¹⁸Ne per second
 - □ ⁸Li ?
 - Studied at LLN, Soreq, WI and GANIL
- Production ring
 - □ 10¹⁴ (?) ⁸Li
 - □ >10¹³ (?) ⁸B
 - Will be studied Within EUROv

N.B. Nuclear Physics has limited interest in those elements ->> Production rates not pushed!

Aimed: He 2.9 10¹⁸ (2.0 10¹³/s) Ne 1.1 10¹⁸ (2.0 10¹³/s)

Courtesy M. Lindroos

New approach for ion production

"Beam cooling with ionisation losses" – C. Rubbia, A Ferrari, Y. Kadi and V. Vlachoudis in NIM A 568 (2006) 475–487

"Development of FFAG accelerators and their applications for intense secondary particle production", Y. Mori, NIM A562(2006)591

Cross Section Measurements, INFN LNL

Beam Energy needed for stripping

Collection device, UCL

- A large proportion of the primary beam particles (⁶Li) will be scattered into the collection device.
 - The scattered primary beam intensity could be up to a factor of 100 larger than the RI intensity for 5-13 degree using a Rutherford scattering approximation for the scattered primary beam particles (M. Loislet, UCL)
 - The ⁸B ions are produced in a cone of 13 degree with 20 MeV ⁶Li ions with an energy of 12 MeV±4 MeV (33% !).

ECR Source

Short pulses (50 µsec) of radioactive ion beams 60 GHz ECR Ion Source Prototype using room temperature coils

The 3D magnetic field structure to confine plasma Experiments at 60 GHz may start in 2010.

Relaxing the duty-cycle for higher energy neutrinos

Neutrino atmospheric background for Ne and He (gamma = 100)

For 8Li and 8B, filling of decay ring using barrier buckets

Particle turnover in decay ring (FP6)

Momentum collimation: ~5*10¹² ⁶He ions to be collimated per cycle
 Decay: ~5*10¹² ⁶Li ions to be removed per cycle per meter

Progress and Plans CERN

- Review of baseline design, ongoing
 - PS2 integration (minimum)
 - RCS
 - Overall cycle and bunch structure
- Relax of requirements of bunch structure in the Decay Ring
 - Barrier buckets in Decay Ring
 - Bunch structure of preceding accelerators
- Production ring
 - Selection of staffing ongoing

Welcome Christian Hansen

- Parameter list
 - Database structure and setup, ongoing
 - Filling, depending on baseline review, being prepared
- Decay Ring Superconducting Magnets
 - Open mid-plane dipole and quadrupole design has been done (energy and radiation checks with beam remaining)

Dependencies

- ECR source
 - Specification of beam parameters after source
- RCS
 - Depends on PS2 integration, extraction energy, bunching and cycling
- Decay Ring Layout
 - Magnet layout
 - Injection (barrier buckets)
 - Collimation (barrier buckets)
- Collection device
 - Production Ring Simulations
- Radio Protection Studies
 - Decay Ring Layout and RF
 - RCS design (Injection Chopper)
 - PS2

Open midplane magnets for decay ring

Scale arbitrary

Design ok for the present design of the decay ring, check for energy deposition and radio resistance (B and Li, check if larger apertures with liner a better option)

Acknowledgments (magnet design, cryostating, cryogenics):

Jens Bruer, F Borgnolutti, P. Fessia, R. van Weelderen, L. Williams and E. Todesco (CERN)

Three designs, Decay Ring Dipole

Design	1	2	3
Aperture radius (mm)	60	90	60
B _{ss} at 1.9 K (T)	6.5	6.8	8.7
Operational field at 1.9 K (T)	5.2	5.5	7.0
B _{ss} at 4.2 K (T)	4.9	5.3	6.7
Operational field at 4.2 K (T)	4.0	4.2	5.4
Gap in midplane (mm)	8.9	12.5	8.7
Yoke (mm)	180	270	240

Courtesy Jens Bruer

Cost estimation, Decay Ring Dipole

 For magnet fabrication and assembling, calculated for a 13 m long dipole

Requires 1.9K !!

Cost (MCHF per unit)	Design 1	Design 2	Design 3
Magnet (material + fabrication)	0.71	0.76	0.82
Cryostat	0.1	0.1	0.1
Cryoplants at 1.9 K	0.3	0.3	0.3
Cryoplants at 4.5 K	0.2	0.2	0.2
Total at 4.5 K	1.01	1.06	1.12
Total at 1.9 K	1.11	1.16	1.22

Open mid-plane quadrupole

In a quadrupole beam losses are mainly located in the mid-plane:

10

0.1

0.01

- Damage the superconducting cable
- Might lead to a quench

- To avoid the peak of the heat deposition an open mid-plane can be inserted
 - How is the field strength affected by insertion of an open mid-plane?

Courtesy Franck Borgnolutti

Open mid-plane quadrupole

- We consider a quadrupole made of 2 pure sector blocks of the LHC main dipole cable.
- Ironless coil is assumed.

- Aperture diameter corresponding to a nominal gradient of 42 T/m with 20 % margin from the quench:
 - 2º opening : 230 mm
 - 4º opening : 200 mm
 - □ 6° opening : 160 mm
- Alternative to open midplane: thick liners

Parameters on the Web for 8B and 8Li

For the first annual meeting of FP7 there seems to be no major danger of not meeting the milestones and the deliverables

Annual meeting this week

Christian, Elena and Elena... in SPC panel for neutrino's it **may** be considered to propose additional support to the project (and the other neutrino projects)

We need advice from RF experts, cooling experts... and there are many interesting subjects to work on...