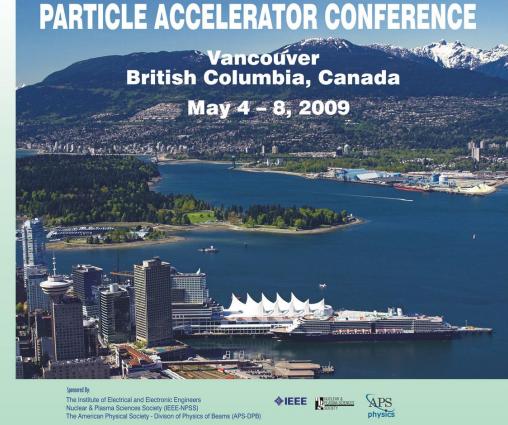
Highlights from PACO9 May 4-8 Vancouver, Canada.

C. Carli, S. Gilardoni, D.Quatraro G. Rumolo, B. Salvant, E. Wildner

Conference Chair: Paul Schmor (TRIUMF)

Local Organizing Committee Chair: Yuri Bylinski (TRIUMF) Tel: 604 222-7311


Scientific Program Committee Chair: Shane Koscielniak (TRIUMF) Tel: 604 222-7339

Conference Coordinator: Sandi Miller (TRIUMF) Tel: 604 222-7352

For further information: pac09@triumf.ca

www.triumf.ca/pac09

Venues: Hyatt Regency Vancouver Fairmont Hotel Vancouver

PAC in numbers....

- ~1400 registered participants
- > 150 scheduled talks over 5 days, organized in 3 parallel sessions, except the plenary sessions on Monday morning and Friday afternoon (but a few were skipped because withdrawn or for absence of the speaker)
- > 1600 posters presented during the separated morning and afternoon poster sessions, parallel to the oral sessions
- Several satellite meetings taking place at the top floor of the Hyatt

Date	Monday, 4 May 2009			Tuesday, 5 May 2009			Wednesday, 6 May 2009			
lace		FV BC Ballroom		Regency A+B	HR Plaza	HR Georgia	Regency A+B	HR P		HR Georgia
hair	0	S. Koscielniak, TRIUMF		S. Prestemon	P. Spentzouris	C. Johnstone	R. Keitel	F. Zimm		D. Findlay
:30	Openir	ng Remarks: S.K. & Paul	Schmor	Magnets for Nxt Gen LS		Wakefield Linear Collide	New UI Capabilities	e-Cloud		MW Ops at SNS
45 00		Why Accelerators?		R. Gupta Magnets for NS-FFAG	E. Stern Electron-lon Dynamics	M. Hogan R&D Toward NFMC	K-U Kasemir Cyber Threats	M. F		J. Galambos JPARC Main Ring
15		ichael Turner, U. of Chica		N. Marks	D. Bruhwiler	M. Zisman	S. Lueders	F. Cas		H. Kobayashi
30		Status of Tevatron Run II		LHC Magnet Performan			Design for high availabil			PS2 Design
45		Valeri Lebedev, FNAL	8	L. Rossi	G. Bassi	R. Palmer	F. Willeke	C. Ce		M. Benedikt
0:00	St	atus of LHC Commissioni	ina	Nb3Sn Magnets	Reduced Scale Range	FFAG & IDSNF	Longevity/middleware			Fluidized Target
D:15	0.	Jorg Wenninger, CERN	ing .	G. Sabbi	J-L Vay	Muon capture/bunching	Automation of MLS	SPARX		Crystal Collimation
0:30		Break			Break			Bre		
0:45										
hair		Shin-ichi Kurokawa, KEK	(Y. Ishi	M. Berz	Hernandez-Garcia	L. Rossi	Y. C	Cai	G. Ciavola
1:00		obing Origins of the Cosm		IFMIF/EVEDA	FFAG & PTC Spacecha	Cornell ERL Injector	ILC e+ source undulator			ECR source review
1:15	Jus	tin Khoury, Perimeter Inst	titute	A. Mosnier	CHEF Improvements	I. Bazarov	J. Rochford	UVX Inserti		T. Nakagawa
:30		RIBs for Astrophysics		European ADS	Negative momentum compact	Femtosecond e-	Cryo PM undulator	Twisted w		SNS H- beam
1:45	Alan S	Shotter, Edinburgh U. & Th	RIUMF	J-L Biarrotte	e-bunch Transport	Diamond photo-cathode	T. Tanaka	3.9GHz Co	upler Kicks	Charge-breader RIB
2:00		J-PARC Status								
2:15	Yosh	ishige Yamazaki, KEK &	JAEA		Lunch			1	ah	
2:30 3:00		Lunch			Lunch			Lun	CII	
lace	Regency A+B	HR Plaza	HR Georgia	Regency A+B	HR Plaza	HR Georgia	Regency A+B	HR P	laza	HR Georgia
hair	M. Sullivan	L. Rivkin	M. Lindroos	T. Grimm	E. Shaposhnikova	In-Soo Ko	J. Delayen	O. Bru		I. Ben-Zvi
4:00	KEKB High lights	Possible APS Upgrade	RIKEN RIB	Cornell ERL SRF	JPARC Low Loss	e- bunch diagnostic	High-gradient structures	Head-tai		Cooling in RHIC
4:15	K. Oide	M. Borland	N. Fukunishi	M. Liepe	A. Molodzhentsev	H. Loos	S. Tantawi	A. Bu		J. Brennan
4:30	B-Factory Lessons	NSLS-II Challenges	CARIBU Project	β<1 SRF Cavity	UNILAC codes	OTR diagnostics	CLIC X-band test	VEPP Resor	ance Cross	Timing ref distribution
:45	J. Seeman	S. Krinsky	R. Pardo	M. Kelly	L. Groening	R. Fiorito	Multi-beam klystron	P. Pin	ninov	M. Ferianis
5:00	BEPC-II Status		FRIB: New Facility for F		Transverse Schottky	NSLS-II diagnostics	LLRF: Reconfigurable	RHIC Bea		CW Laser Wire
5:15	C. Zhang	C. Steier	R.C. York	R-L. Geng	6D Muon cooling	O. Singh	L. Doolittle	W. Fis		Y. Honda
5:30	Super-B Project	Shanghai Light Source	High Power RFQs	STF Cryomodule	Cyclotron space-charge	Bunch length	Project-X LLRF	storage ring nor		3D Profile Monitor
5:45	Dynamical Beta	Zhentang Zhao	A. Pisent	Eiji Kako	NSCL Isochronous ring	LCLS BPMs	Self-excited loop model	Advanced tools		Tomography& spacecha
16:00	Break		Break			Break				
6:15 Chair	NA	A 5-1	0 Diadaan	N 51-	0.11-11-11-11-1	M E dalama				W Distant
6:30	M. Tigner DAFNE Crab Waist	A. Freyberger Status& Future of ERLs	S. Biedron MW Power Supply	M. Fazio Solid State RF Amp	G. Hoffstaetter Emittance Exchange	M. Futakawa LHC Collimation	H-C. Hseuh He Refrigerators	A. N EMMA N		W. Blokland JPARC MR diagnostic
5:30 5:45	C. Milardi	R. Hajima	I. Marneris	M. Di Giacomo	R. Fliller	R. Assmann	V. Ganni	S. SI		e-cloud at FNAL MI
7:00	LHC Crab Cavity	Multi-pass ERL	Solid state PS	Sheet Beam Klystron	u-scope, Streak Camera	MW-class Target R&D	LHC Vacuum System	SNS Ri		LHC Beam Instrumental
7:15	Tevatron Luminosity	N. Vinokurov	D. Anderson	D. Sprehn	W. Wan	J. Haines	J. Jimenez	RFQ fo		Alignment of LHC
7:30	RHIC polarized proton	Cornell X-ray ERL	Lasers for Next Gen LS		Large Grain Cavity	MERIT at CERN	TLS Vacuum	e-linac t		LHC m/c protect
7:45	RHIC beam-beam	Wisconsin FEL Initiative	M. Danailov	J-PARC MA cavity	ISAC-II High-Beta	K. McDonald	SESAME PS	HITRAP		ALS Interlocks
8:00										
8:15				Wo	men in Engineering Rece	ption		HR = Hyatt	Regency	
8:30					R English Bay Rm, 34th F			FV = Fairmo		Light Courses
3:45										L: Light Sources
9:00		Chairman's Reception							BDEMF	: Beam Dynamic
		HR 34th Floor							HEHAC	: High-Energy H
:00										
									SAI: So	urces & Injector
:00									MAGNE	ET
										: Radio-frequend
									ACCTE	CH: Accelerator
										Applications of A
									COLLIE	ER: Circular Co
									I FAC: I	Lepton Accelerat
										R: Low & Mediu
									CONTO	OPS: Controls &

INSTRUM: Instrumentation

ADVCON: Advanced Concepts

PPHIB: Pulsed-Power, High-Intensity Beams Special

15/06/09 LIS Meeting

	Thursday, 7 May 2009			Friday, 8 May 2009					
HR F		HR Georgia	HR Regency A+B	HR Plaza					
Special Foru		S. Ozaki	K. Yokoya	S. Peggs	T. Roser				
Accelerators for Envir		HIRFL-CSR	CLIC Project	RHIC Progress	Coherent e- cooling				
Douglas V		J-W Xia	Rogelio Tomas	C. Montag	V. Litvinenko				
Accelerators for Se	curity Applications	China SNS	ČESR-TA	Collider Initiatives	Project-X				
A. Mishi	n AS&E	S. Fu	M. Palmer	R. Milner	S. Holmes				
XFEL Project	Management	Accels in Korea	ATF2 Status	LHC Upgrade	FAIR Complex				
Thomas H		W. Namkung	A. Seryi	F. Zimmermann	M. Steck				
Techniques for Success	ful Project Management	Accels In India	CTF3 Achievements	Tevatron Experience	AGS polarized p				
Suzanne Herro	on (SNS/ITER)	V. Sahni	ATF2 Optics Model	LHeC	LHC Injection				
	Break		Break						
Stan Schriber/		HR Georgia	A. W. Zhang	A. Dragt	S. Boucher				
Louis Costrell H	onorary Session		CAEP Induction Linac	Impedance Theory	USPAS				
			J. Deng	G. Stupakov	W. Barletta				
IEEE/NPSS Docto			SPS Kicker Magnet	Galactic Stability	SPIRAL-II collaboration .				
APS/DPB Doctor			Dielectric Wake Kicker	A. Chao	R. Ferdinand				
Wilson									
Satosh				<u> </u>					
	Lunch		Lunch						
	es/Awards Invited Lunch								
HR Plaza	HR Georgia A	HR Georgia B	HR Regency Full=A,B,C,D Paul Schmor, TRIUMF						
H. Hama R. Davidson		G. Geschonke 2-Beam Linear Colliders							
			Expe	Experimental Results from FLASH					
P. Emma				M. Bogan, SLAC					
	SCSS TA XFEL Dielectric Wall Linac		Science of L	Iltra-fast Electron and Ph	oton Sources				
	K. Togawa G. Caporaso		S. Karsch, MPQ						
Jlab FEL Progress			The New Generation of Neutron Sources						
	C. Tennant I. Kaganovich		Thomas Mason, ORNL Neutrino Factory: Final Frontier in Neutrino Physics?						
	FLASH Operation Targets for WDM		Neutrino Fact	itrino Physics?					
7th harmonic IFEL	P. Seidl	P. Muggli	Alan Bross, FNAL						
	Break HR Plaza Foyer		Progress Toward ILC Nicholas Walker, DESY						
V. Litvinenko	F. Meot	J. Rosenzweig	Clo	mor					
LNLS-2: New Brazil light	HIT/CNAO therapy T. Haberer	Laser-driven p beams laser wakefield e-beam			۰ FFI				
DIAMOND PLS-II at PAL			LSAFEL: Light Sources & FEL BDEMF: Beam Dynamics & EM Fields						
RF deflector in QBA				HEHAC: High-Energy Hadron Accelerators					
SPARC FEL experiment				SAI: Sources & Injectors					
Duke gamma source			MAGNET						
		X-band PBG		RFSYS: Radio-frequence	vy Systems				
Cocktails	HR Regency Foyer, Bal	moral	ACCTECH: Accelerator Technology APAC: Applications of Accelerators						
	FV BC Foyer	nordi		COLLIDER: Circular Co					
	Banquet		LEAC: Lepton Accelerators						
	HR Regency Full		LAMEAR: Low & Medium Energy Accelerators						
	FV BC Ballroom		CONTOPS: Controls & Operations						
	. V BO Bailtoon		INSTRUM: Instrumentation						
			ADVCON: Advanced Concepts						
			PPHIB: Pulsed-Power, High-Intensity Beams						
					ecial				
				50					

C. Carli

- Interest for PSB with Linac4
 - Discussions with people from SNS (ORBIT authors):
 - Problem with SNS injection foil (broken support)
 - Discussions on ORBIT upgrades (J. Holmes promised to work on the code):
 - Emittance evaluation without using lattice dispersion (short-term)
 - Larger ORBIT modifications to define lattice directly in ORBIT (without need to pass via a lattice program like MAD) and with time-dependence
 - Discussion on first benchmarks (strictly speaking triggered only by PAC09): quad fringe fields off for better agreement
 - Discussions on "beam-head" with different people working for H⁻ Linacs and charge exchange injections:
 - Piece of Beam at beginning of pulse sent to dump for stabilization of Linac RF ()
 - Nobody seems to need such a beam head
 - Schemes to ramp slowly the "average" current by generation longer and longer pieces with beam (with chopper)
- Editing of proceedings (.... e.g. Chamonix workshop)
 - Discussions with JACOW team and, in particular, J.Poole on general aspects
- Of general Interest (obviously very subjective)
 - Impressive Progress of Plasma acceleration (compared to situation when I was first at a big conference)
 - LHC very well represented (with some interesting informations learnt far away)
 - Tevatron Run 2 Peformance still increasing

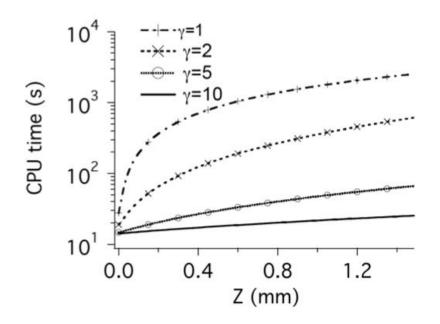
S. Gilardoni

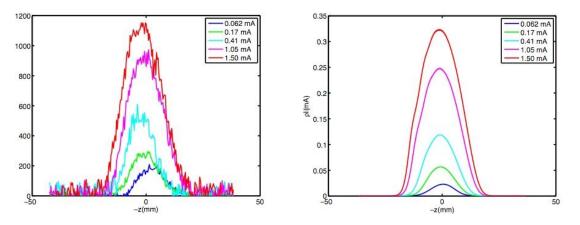
Simo highlights

- Tevatron Run II -> Most probably not enough luminosity to discover Higgs at 5 sigma but only, at best, at 3 sigma (Mh> 160 GeV/c2 but can discover only if Mh<180 GeV/c2). Run until FY 2011. Luminosity improvements thanks to better pbar production, stacking, cooling.
- J-Parc commissioning -> commissioning up to the Main Ring (0.04 10^13 protons) -> main problems is the linac RFQ and the RF in the rings -> too many discharges and material damage.
- AGS injection line -> similar problems as for us -> model too old and doubt about the matching -> studying stil ongoing
- Non-linear dynamics studies at VEPP similar to MTE studies -> concentrated on the 1/3 resonance. However, results less convincing than ours. Losses during resonant crossing whereas we have losses after crossing.

D. Quatraro

J.-L. Vay et al, "Application of the reduction of scale range in a Lorentz boosted frame to the numerical simulation of particle accelerator devices"




Figure 5: CPU time recorded as the beam crosses successive stations in the laboratory frame.

Using Lorentz transformations

$$\left\{ egin{array}{l} x' = \gamma(x-vt) \ t' = \gamma(t-vx/c^2) \end{array}
ight.$$

allows to minimize CPU time In the picture the CPU time versus the speed of the frame (laser wakefield acceleration)

Usefull for PIC routines => HEADTAIL would profit Might take a while to implement that in our code!!! Yunhai Cai, et al (all people from SLAC and KEK), "Measurements, analysis and simulations of microwave instability in the low energy ring of KEKB" Numerical solution of the Vlasov equation and experimental data: using a Broad Band impedance they got info concerning the impedance of the ring.

Bunch longitudinal profile measurements and simulations

It is sth we can do at the PSBooster not only for measuring the impedance but also to validate low - energy impedance models!!

M. Pivi, "Detailed Electron-Cloud Modeling with CMAD"

- •Since PAC07 CMAD is a parallel code for EC instabilites. It is exactly the extension we have done to date letting HEADTAIL get the MAD-X optic for particle tracking
- •But CMAD has to advantage of being a parallel code: we already discussed that with Streun Andreas (PSI) but no follow-up actions

Parallelizing the code and using the Lorentz Boosted frame would take quite a while...and according to me writing the code from scratch...

Is it worth it??

A. Burov, "Head-tail modes for strong space charge"

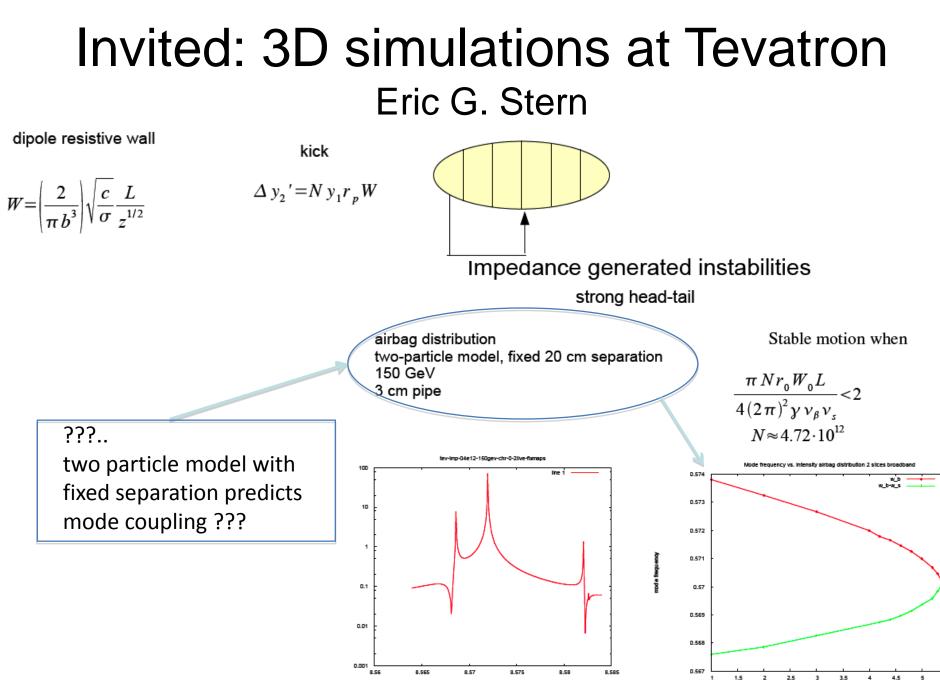
Had a discussion (as we did at GSI) with Burov whether it is possible to apply his theory

Starting point: $Q_{S.C.}^{Sup.} \gg Q_S, Q_W$ PSB at 160 MeV

$$Q_S = rac{R|\eta|\sigma_\delta}{\sigma_s} \simeq 6 \cdot 10^{-4}$$

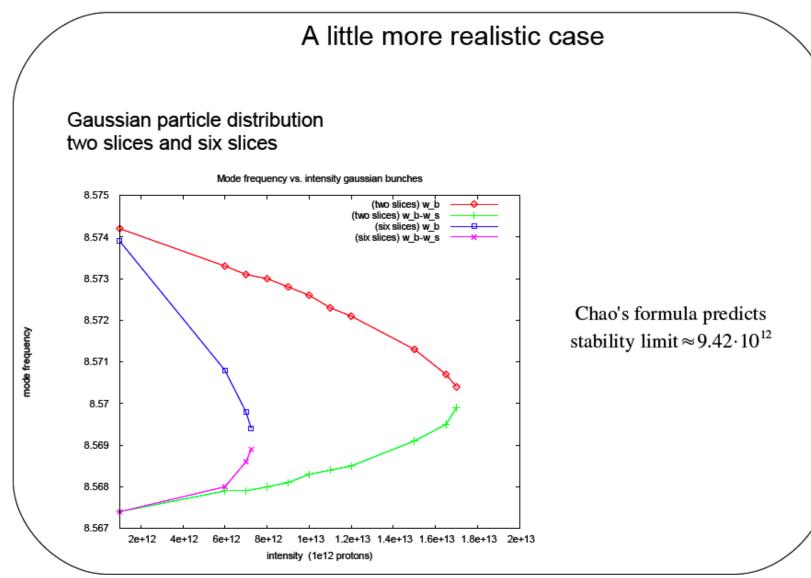
$$\underbrace{Q_W^v/Q_W^h}_{W} \simeq 0.07/0$$

experimental

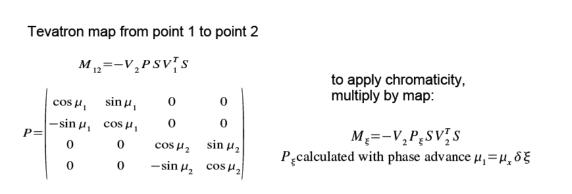

$$Q^{Sup.}_{S.C.}\simeq 0.3-0.5$$

Burov's theory could be applied: to discuss if we want to spend time validating his predictions

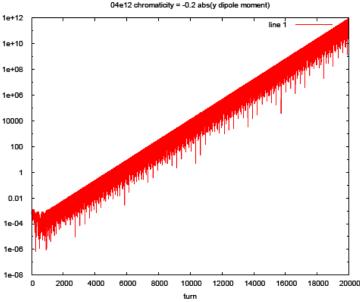
G. Rumolo


Invited: 3D simulations at Tevatron Eric G. Stern

- Described the development of a comprehensive code with beam-beam and impedances (not clear about the 3D capabilities)
- Beam-beam studies with synchro-betatron resonances
- Impedance model seems very similar to HEADTAIL (using wake fields on a sliced bunch), but rougher

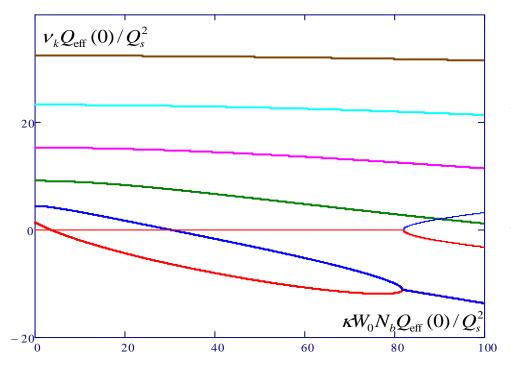

Intensity (1e12 protons)

Invited: 3D simulations at Tevatron Eric G. Stern



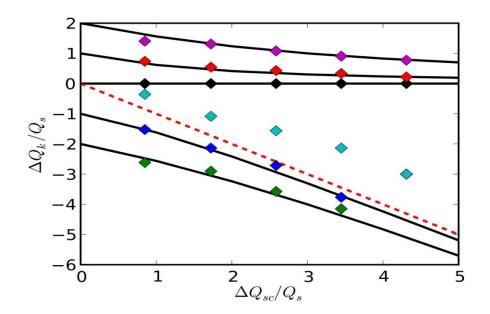
Invited: 3D simulations at Tevatron Eric G. Stern

Turn on chromaticity and simulate...



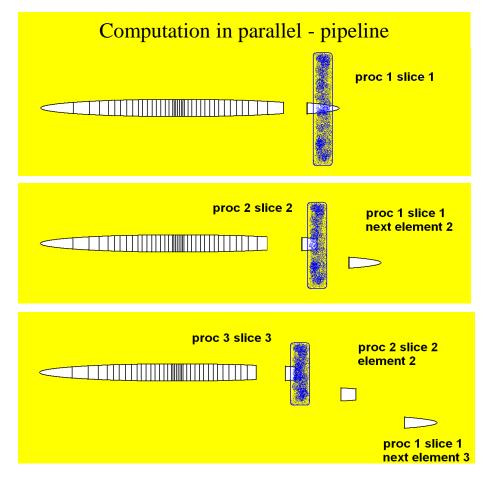
V_x transforms uncoupled representation of particle coordinates into physical coupled coordinates at point *x* using Twiss parameters

Some talks on head-tail modes with space charge (like at the GSI workshop in February)

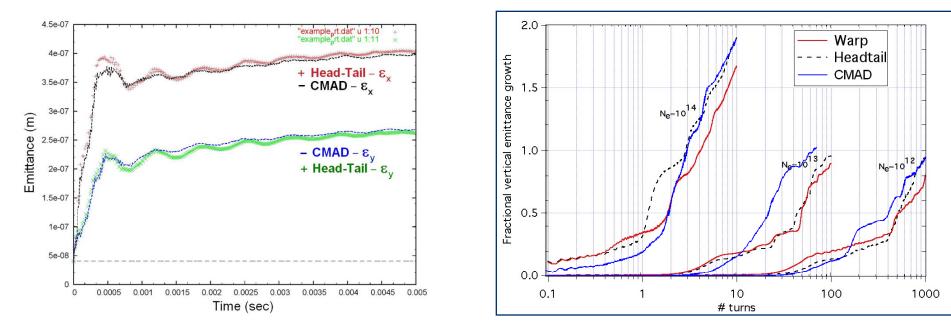

• A. Burov presented all the theory of coherent modes in presence of strong space charge (lots of equations and few plots)

- Strong space charge means that the space charge tune shift must exceed the synchrotron tune
- There is a significant increase of the TMCI threshold

Some talks on head-tail modes with space charge (like at the GSI workshop in February)


- O. Boine-Frankenheim:
 - validates Blaskiewicz's model by his PATRIC simulations with space charge and impedance
 - Coherent modes extracted from the Transverse Schottky spectrum of the beam

Electron cloud @ PAC09



- M. Pivi presented his new code CMAD
 - Calculates electron cloud-bunch interaction in a fashion similar to the new HEADTAIL, i.e. mapping between different selected lattice stations, in which the interaction with the electron cloud happens
 - It has been conceived for parallel computation

Electron cloud @ PAC09

- M. Pivi presented his code CMAD
 - The code has been successfully benchmarked against HEADTAIL and WARP
 - It has been applied to electron cloud studies for the ILC damping rings

Electron cloud @ PAC09

- F. Caspers presented the technique of microwaves to measure electon clouds
- C. Celata presented the cyclotron resonances in dipoles
- Cesr-TA:
 - Experimental studies: measurements of 3D electron cloud distributions in wigglers, energy distributions of the electrons in different working conditions, tune shifts along both electron and positron bunch trains
 - Simulations: use the three codes ECLOUD, POSINST, CLOUDLAND to benchmark their results.
 - Plans: for the July run, measurements with the C-coated chamber produced at CERN. Take a closer look at instabilities and benchmark with codes (HEADTAIL, WARP, CMAD)
- Feedback system to fight electron cloud instabilities
 - General considerations and definition of specifications (J. Fox et al.)
 - Simulation study with HEADTAIL (J. Thompson et al.) to define gain and bandwidth needed to efficiently suppress ECI at the SPS
 - Simulation study with WARP (J-L. Vay at al.)
 - Results of SPS measurements with wide band pick up (R. de Maria et al.) 15/06/09 LIS Meeting

B. Salvant Simulations of the BPMs

- Alexei Blednykh (BNL)
 - Does similar 3D simulations on longitudinal wakes of NSLS II diagnostics
- Ulrich Becker (CST)
 - Explained in detail the factor 4 issue. He will get back to me.
 - Showed the DFT issue.
 - Showed the problem of loss of units when getting 1D results. Said it was intended like that. In general, one has to be very careful when using 2 successive postprocessing steps on data.
- Lukas Haenichen (TU Darmstadt)
 - Never uses the automatic mesher of CST... We always do!!!
- Andranik Tsakanian (Uni Hamburg)
 - Developed his own 2D electromagnetic solver since he found numerical dispersion error with CST.
 - Showed ways to reduce CST numerical error (refine at PEC boudaries)
 - He benchmarked his 2D code with theory for finite resistivity tube (same as Carlo)
- Reiner Wanzenberg
 - Also problems when benchmarking the transverse wake in Mafia and CST particle studio (also reported to CST at PAC)

CST got back to me and found that the factor 4 was an issue of the current version of Particle Studio

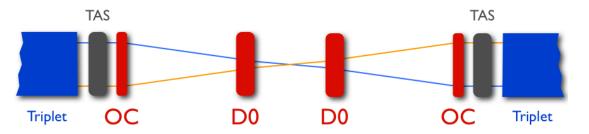
Resistive Wall model

- Y.H. Chin
 - Is very interested in the delocalized impedance source model (Diego and Giovanni)
 - Is publishing on resistive wall finite length
- H. Hahn
 - \rightarrow multi-layer by simple multiplication of matrices
 - \rightarrow Could be more efficient numerically than solving the system
 - → Is concerned by the fact that E_z could go to 0 in the outer layer (to be checked), and therefore by the model we should use for air.
 - \rightarrow would be glad to have our numerical values for collimators to benchmark his code

E. Wildner

Energy deposition in the High Lumi insertions LHC upgrade

G. Sterbini, J.-P. Koutchouk: Study of a Less Invasive LHC Early Separation Scheme


LHC Early Separation Scheme: four dipoles close to insertions to decrease crossing angle and reduce effect of parasitic interactions. Can be used for luminosity levelling. This presentation showed results from dipoles further from the IPs than earlier proposals presented (experiments do not want equipment close to interaction point), from 7 to 14 m.

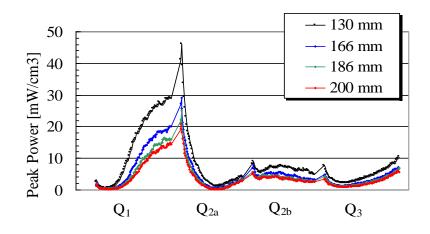
<u>E. Wildner</u>, F. Cerutti, A. Ferrari, A. Mereghetti, E. Todesco, F. Broggi: Analysis of Energy Deposition Patterns in the LHC Inner Triplet and the Resulting Impact on the Phase II Luminosity Upgrade Design

Possible by choosing a good layout/optics and a good shielding to cope with $L= 10^{35}$ cm⁻² s⁻¹.

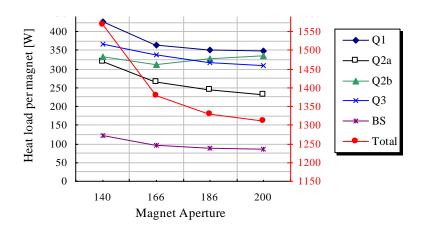
The Early Separation Scheme

It is a possible player for the Phase II LHC luminosity upgrade.

PRINCIPLE: It consists of 4 dipoles per IP (2 D0 + 2 OC): they can (1) reduce the beams crossing angle at IP, (2) alleviate the detrimental interaction between the beams (beam-beam effect) and (3) do luminosity leveling.


PROPOSAL: D0 at 14 m from the IP + OC at 21 m from the IP. DO is a 120 mm aperture ironless 9T Nb₃Sn 4.2K dipole in a 2m cryostat. Power deposition studies were performed: heat load on coils 28W @ 10^{35} cm⁻²s⁻¹, peak heat load lower than Nb₃Sn assumed limits. A 150 mm thick tungsten shielding in front of the D0 is needed.

PERFORMANCE: it increases by 20% the integrated luminosity reducing at the same time the peak luminosity by 30%, with a consequent reduction of the pile-up in the detector and of the dynamic heat load on the IR magnets.


Parametric studies of energy **deposition** Vary length of triplet -> gives different quad field

Lower field give less energy deposition

Possible to insert liners in magnets for protection and/or disctibute heat load on a higher temperature cryo system.

Peak energy deposition in triplet coil for different triplet lengths. Scaled to have the same length

Heat load versus triplet aperture in Q1, Q2a, Q2b and Q3, beam screen and total load on magnets without beam screen

Neutrino Facilities

M. S. Zisman (LBNL): R&D toward a Neutrino Factory and Muon Collider

Review experimental results from MUCOOL (Muon Ionization Cooling R&D), MICE (Muon Ionization Cooling Experiment) and MERIT (24-GeV proton beam incident on a target consisting of a free mercury jet that is inside a 15-T capture solenoid magnet) and discussion on proof of principle demonstrations of the key technologies required for a neutrino factory or muon collider. Progress in constructing MICE, including the coupling coils and cavities, and the future tests planned at MUCOOL were also discussed

R. B. Palmer (BNL): Progress toward a Muon Collider

R&D for a machine to cool, accelerate and collide TeV muon beams. This talk was a review of progress and showed how such a machine might evolvefrom programs to build high intensity proton sources and neutrino factories.

Many Posters on accelerator issues, in particular cooling of muons Beta Beams not represented this time, we will do better for next (I)PAC