Orbit distortion at transition CROSSING WITH A NEW PICK-UP IN SS76 IN THE CERN PS

Sandra Aumon - Heiko Damerau - Simone Gilardoni
BE/ABP - LIS Meeting
15 August 2009

Contents

- Motivations: MRP through transition in 2007.
- The radial loop control system (RLC).
- Trajectory through transition with the new CODD
- Disadvantages of the current RLC configuration.
- Motivations for the choice of the new RLC config.
- MD - What did we do - Results
- Conclusions - Outlooks

MEAN RADIAL POSITION @ TRANSITION (2007)

Mean Radial Position (MRP) computed with the 40 PUs of the orbit measurement system (CODD) with an AD beam

- MRP-jump due to the doublets inversion of the Gammajump.
-1-2 mm of the jump is explained by the fact that the orbit doesn't pass by the center of the GJ quadrupoles
- However, 2 mm are left.

MRP WITH A RADIAL STEERING

SFTPRO 10/10/07, Transition time: 486 ms

With the radial steering:

- Less losses.
- No MRP jump at transition

MRP WITH A RADIAL STEERING

- BLM SFTPRO 2 Juillet 2007 - sans correction

Environ 1-2\% du faisceau est perdu
$\sim 10-20$ e10 part.
~ faisceau EAST

Transition

MRP WITH A RADIAL STEERING

RADIAL LOOP SYSTEM

- The radial loop system controls the MRP with initially 3 PUs in section 22-51-96. The PU 36 was included in 2008.
- It is working jointly with the phase loop.

Trajectory Through transition

Data taken with the new orbit measurements system (10000 trajectories through transition)

From J. Bellemann

Phase advance not suitable

DISPERSIONS THROUGH TRANSITION

Dispersion at 4 PUs

- The PU51 might be less sensitive to changes in trajectory due to dispersion.
- Dispersion computed with MADX

Mean Dispersion in the PS

Problems With The current system

- PU51 is less sensitive to changes in trajectory due to its low dispersion during the Gammajump.
- Not optimal phase advance between the PU51 and 96 and PU36.
- Proposal to include the PU76 in the radial loop system

MRP MEASUREMENTS WITH THE PU76

- The PU76 was connected to the radial loop control system.
- MRP measurements on the AD, SFTPRO and ToF beams with several PUs combinations (PU22, 36, 76, 96 and the current configuration)
- Trajectories turn by turn thanks to the new orbit measurements system.

Results md - AD BEAM

MRP @ transition and along the cycle.

- Beam well centered for 22-36-76-96
- Almost no MRP jump
- Mean center of the GJ quadrupoles around -1mm

RESULTS MD - SFTPRO BEAM

MRP @ transition and along the cycle.

RESULTS MD - TOF BEAM

MRP @ transition and along the cycle.

- Mean center of the beam of the GJ quads $\sim-1 \mathrm{~mm}$.
- The direction of the jump is inversed.

Conclusions-OUTLOOKS

- In 2007 , the center of the GJ quads seemed to be around +3.5 mm . This year, the center seems to be around -1 mm .
- Measurements with radial steering to check the transition crossing of the MRP.
- Launch orbit simulations with the new alignment of the GJ quads.
- The steering of the beam had been improved by using the new PU76: the radial loop system is more sensitive to energy error and the Pus have a better advance.
- MRP-jump due to:
- steering of the beam at the GJ quads (inversion of the doublet @ transition)
" The radial loop system can not correct quick deviation (doublets inversion ~ 500 ps.), the system is inactive for several ms . This is what we observed

