

ECOLE DOCTORALE DOCTORAL SCHOOL

PROGRAMME DOCTORAL EN PHYSIQUE DOCTORAL PROGRAM IN PHYSICS

Magnetic Model of the CERN PS Accelerator

Mariusz Juchno

Thesis director: Co-director: Prof. Leonid Rivkin Dr. Davide Tommasini

- Introduction
- Motivation
- Objectives
- Methodology
- Magnet description
- Work done so far
- First results
- Planning

Introduction

• Exploring full potential of LHC physics

- Increasing the performance luminosity
- Upgrades of the injection chain

Proton Synchrotron (PS)

- Working point adjustments
 - Reducing beam losses
 - Increasing beam intensity
- Control system
 - Field prediction for power supply control
 - Injection and extraction upgrades
 - PSB and SPS upgrades
 - Multi-turn Extraction

Motivation

- In 50 years of the PS operation all attempts to establish a field model, necessary for machine developments, have failed so far.
- After the cancellation of the PS2 project, it is now clear the PS will have to provide a reliable and high performance beams, for various working points, for the next 25 years.
- Setting a field model becomes now a necessity.

- To develop a model of the magnetic field inside the PS magnets, capable of accurately recreating the magnetic field along the beam trajectory.
- Implement and validate the magnetic model inside existing optical model of the PS accelerator.

Methodology

- Investigation of the magnetic field inside the PS magnet
 - Broad numerical analysis in 2D and 3D (static, transient, demagnetization).
 - Magnetic measurements (real-time using B-train system, dedicated with spare magnets).
 - Establish separate contributions of different circuits.
 - Derive quasi-static formulas of the field components taking into account dynamic and hysteresis effects.
- Implementation of the magnetic model in the existing optical model of the PS accelerator.
 - Simulation of the optical parameters with MAD-X model.
 - Beam-based measurements (tune and chromaticity).
 - Verification and calibration of the magnetic model.
 - Optical model enhancements.
- Investigation of the possibility of implementing the model in the control system of the accelerator

Proton Synchrotron main magnetic unit

Open block

- Combined-function magnet with hyperbolic pole shape
 - Dipole field guiding
 - Quadrupole field focusing
 - Higher component are also present due to saturation
- Focusing and defocusing half (alternating-gradient focusing)
 - 5 C-shaped block in each half
 - Wedge shaped air gaps between blocks
- Complex geometry of coils system
- In total 100+1 main units of four different types.

Coils of the PS magnet

- Main coil
 - Dipole and quadrupole field mostly
- Figure-of-eight loop
 - Adjusts quadrupole field but also contributes to dipole field
- Pole-face windings (PFW)
 - Separately for focusing and defocusing half
 - Each winding has narrow and wide circuit
 - Corrects higher components of the field

- PFW Powering upgrade
 - Five currents (I_{f8}, I_{pfwFN}, I_{pfwFW}, I_{pfwDN}, I_{pfwDW}) instead of four (I_{f8}, I_{pfwF}, I_{pfwD})
 - Control of the four beam parameters Q_h , Q_v , ξ_h , ξ_v
 - One current remains free for controlling an additional physical parameter
 - Possibility of exploring new working points

Work done so far

- The contributions of separate circuits have been identified by numerical modelling and analysis.
- This led to the formulation of a « Transfer matrix ».
- The association and correction of the «Transfer matrix » with physical formulas based on the magnetic circuits is being explored
- Several machine measurements were performed to validate the formulas and parameters identified so far.

First results

- The numerical approach seams to be capable of recreating measured data. The requested accuracy may be probably achieved once dynamic and hysteresis effects are implemented.
- The simplified model set so far could reproduce measurements done in the past on relative variations of the machine tune.

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Investigating contributions of separate circuits

- 2D quasi-static numerical analysis of the magnetic field inside the PS magnet.
- Range of operations:
 - ► Injection P_{inj} = 2.12 GeV/c
 - Extraction $p_{extr} = 26 \text{ GeV/c}$
- Current range:
 - Main coil
 I_{mc} = 400-5500 A
 - Figure-of-eight loop $I_{f8} = \pm 1200 \text{ A}$
 - Pole-face windings $I_{pfw} = \pm 200 \text{ A}$

Investigating contributions of separate circuits

15 November 2010

ÇÉRN

Transfer matrix formulation

Decomposed magnetic field in the linear range (I_{mc} < 3000A)

$$B_{n}(I_{mc}, I_{f8}, I_{pfwN}, I_{pfwW}) = p_{nmc} \times I_{mc} + p_{nf8} \times I_{f8} + p_{npfwN} \times I_{pfwN} + p_{npfwW} \times I_{pfwW}$$

n = 1, 2, 3 corresponds to dipole, quadrupole and sextupole component

Transfer matrix with constant contribution coefficients

	Clos	sed (focusing) blo	ock	Open (defocusing) block						
	Dipole	Dipole Quadrupole Sex		Dipole	Quadrupole	Sextupole				
P _{mc}	2.4958E-04	1.0261E-03	-1.1741E-05	2.4959E-04	-1.0266E-03	-1.1253E-05				
P _{f8}	-2.4980E-05	-1.0258E-04	-4.9043E-06	2.4980E-05	-1.0251E-04	8.0704E-06				
P _{pfwN}	-1.6098E-05	6.4759E-04	-1.0835E-02	-1.6098E-05	-6.4759E-04	-1.0836E-02				
P _{pfwW}	-8.1006E-05	5.6230E-04	4.1829E-02	-8.1007E-05	-5.6223E-04	4.1828E-02				

Transfer matrix formulation

- Behaviour of the magnetic field is not linear
 - Hyperbolic pole tip
 - Non-linear magnetic properties
- $p_n = p_n(I_{mc})$ to increase accuracy
- Difference between numerically calculated and modelled field using different parameters fitting

	Clo	osed (focusing) b	olock	Open (defocusing) block						
	Dipole [T]	ipole Quadrupole S [T] [T/m]		Dipole [T]	Quadrupole [T/m]	Sextupole [T/m²]				
Constant	6.42e-04	3.23e-03	8.88e-03	6.20e-04	2.32e-03	I.46e-02				
Linear	3.83e-04	2.01e-03	7.80e-03	3.84e-04	2.09e-03	8.64e-03				
Poly2	9.85e-05	5.39e-04	2.40e-03	9.98e-05	5.16e-04	2.09e-03				

- At higher field level strong non-linear behaviour due to iron saturation
 - Additional square and cross terms might be introduce
 - arctangent function to fit matrix parameters

Establishing physical formulas

 Generic formula of the field model

$$B_n = B_n \left(I, \frac{dI}{dt}, t, I(-t) \right) \leqslant$$

Steady field amplitude

$$B_{gap} = NI \frac{R_{gap}}{R_{core} + R_{gap}} \frac{\mu_0}{g}$$
$$R_{core} = \frac{l}{\mu_{iron}A_{core}}$$

Steady field and saturation contribution
Remanent field (hysteresis)
Dynamic effects (eddy currents)

Establishing physical formulas

- Complete formula for steady field inside the pole gap
 - Additional formulas for auxiliary circuits
 - Coupling through the iron permeability
 - Dependency on horizontal coordinate
 - Pole gap length
 - Mean flux path
 - Iron permeability
 - Formulas for quadrupolar and sextupolar components

$$G_{y} = \frac{\partial B_{y}(x)}{\partial x} \quad S_{y} = \frac{\partial^{2} B_{y}(x)}{\partial x^{2}}$$

Performing machine measurements

 Total field measurement using B-train installation

$$B(t) = B_0 + \int_0^{\infty} \dot{B} dt$$

- Field marker "picking-strip"
 - Saturation of a ferromagnetic strip
 - B₀ = 49.8 G
- Flux coils
 - Induced voltage $\dot{B} = k \times V_{coil}$
- Field control using B_{train} signal

$$B_{train} = \frac{0.909 \times B_D + 1.091 \times B_F}{2}$$

 In scope of this research, possible extension for quadrupole and sextupole measurement

- Reference magnet
 - $3 \times \text{peaking strip (F block)}$
 - 3 × peaking strip (D block)

 $3 \times \text{coils}$ (F block) $3 \times \text{coils}$ (D block)

17

Performing machine measurements

- Tune measurements
 - Exciting a coherent betatron oscillation with kicker
 - Measuring beam position with a pick-up

 Non-integer part of the tune obtained with Fourier Transform

- Chromaticity measurements
 - Modulating beam momentum using RF frequency
 - Tracking tune

First comparison with measurement data

Powering configuration used in measurements from 1992

	l _{mc}	l _{f8}	I _{pfwF}	l _{pfwD}
Cycle E	669.2 A	0 A	0 A	0 A
Cycle A	2677.5 A	450.35 A	39.05 A	-45.08 A

• Cycle E comparison

	Fo	cusing half-u	nit	Defocusing half-unit					
	Dipole Quadrupole [T] [T/m]		Sextupole [T/m²]	Dipole [T]	Quadrupole [T/m]	Sextupole [T/m²]			
measured	0.16688	0.68500	0.25000	0.16712	-0.68600	0.15000			
modelled	0.16659	0.68448	-0.00926	0.16662	-0.68574	-0.00144			
difference	0.00029	0.00052	0.25926	0.00050	-0.00026	0.15144			

• Cycle A comparison

	Fo	cusing half-u	nit	Defocusing half-unit					
	Dipole [T]	Quadrupole [T/m]	Sextupole [T/m²]	Dipole [T]	Quadrupole [T/m]	Sextupole [T/m ²]			
measured	0.65227	2.74050	1.20000	0.68388	-2.73200	-1.55000			
modelled	0.65333	2.74896	1.17631	0.68395	-2.74027	-1.42816			
difference	-0.00106	-0.00846	0.02369	-0.00007	0.00827	-0.12184			

81

19

First comparison with measurement data

- Step cycle measurement and difference between measured and modelled field
 - Discrepacies up to 20 G
 - Dynamic and hysteresis effects are not yet included in the model
- Example of history dependent effect in SFTPRO cycle
 - Measured current difference correstponds to 5 G
 - Remanent field has to be investigated and implemented in the model

	Measured	I _{mc} [A]	I _{mc} [A]	Estimated
	B _{tr} [G]	Alone in SC	Full SC	ΔB _{tr} [G]
Injection	1013.7	404.9	404.5	
Flat-top	6666	2668.08	2666	5

Magnet representation in the optical model

- Drift spaces under the main coil
- Focusing and defocusing sector magnet
 - Bending angle
 - Quadrupole and sextupole components

 from magnetic model
 - Pole-face angles no data available
 - Effective bending length from old measurements

- Thin-lens multipoles
 - Octupole and higher components
 - Currently inactive
- Central junction
 - Quadrupole and sextupole component
 - Data unavailable

Tune calculation with MADX and field model

 Possibility to interpolate measurements for other working points and improve procedures controlling the beam parameters

Aspects of the optical model that need further work

- Effective bending and focusing length
- Pole-face angles (edge focusing)
- Field inside junction area
 - 3D modelling and magnetic measurements
- Degradation of optical parameters at stabilised field
 - Transient analysis
 - Real-time magnetic measurements
 - Beam based measurements

Scheme of work

	2009		2010		2011		201		12		
Literature review											
Development of 2D numerical model and performing quasi-static simulation campaign											
Analysing data and formulating a 2D mathematical model											
Real-time magnetic measurements, verification and calibration of the model											
Beam measurements (tune and chromaticity)											
Transient analysis of the field and model extension											
3D model development and 3D effects investigation											
Major measurement campaign on one of the spare magnets											
Implementation in an optics model of the accelerator, recreation of beam parameters and validation with a beam-based measurements											
Implementation in accelerator control system											
Evaluation of the presented approach in modelling other resistive magnets											
Writing thesis											
accelerator, recreation of beam parameters and validation with a beam-based measurements Implementation in accelerator control system Evaluation of the presented approach in modelling other resistive magnets Writing thesis											

