RCS LATTICE DESIGN

Christian Carli, Miriam Fitterer, Horst Schönauer Acknowledgements: Bernhard Holzer

RCS as PS-Booster Upgrade

Motivation:

- new machine instead of upgrading old one
- avoid triple splitting in PS

Main Parameters:

Energy	$160 \mathrm{MeV}-2 \mathrm{GeV}$
Circumference	$1 / 7 \operatorname{Circ}(\mathrm{PS})=89.76 \mathrm{~m}(\mathrm{~h}=1, \mathrm{~h}=1+2$ or $\mathrm{h}=3)$ or $4 / 21 \mathrm{Circ}(\mathrm{PS})=119.68 \mathrm{~m}(\mathrm{~h}=1+2$ or $\mathrm{h}=4)$
Repetition Rate	10 Hz
Maximum magnetic field	1.3 T
Aperture estimates by downscaling booster acceptance:	Dipoles (Scrapers): $29.5 \mathrm{~mm}(\mathrm{v}), 61 \mathrm{~mm} \mathrm{(h)}$ Quadrupoles (vacuum chamber): $60.5 \mathrm{~mm}(\mathrm{v}), 67.5 \mathrm{~mm}(\mathrm{~h})$

Not considered:

- nonlinearities, resonances etc.
- space charge
- Collimation

Basic Options

Racetrack - 2-fold symmetry:

Triangle - 3-fold symmetry:

Square - 4-fold symmetry:

Higher symmetries were not considered as the straight sections become too short to host Injection/Extraction

Some Rule of Thumbs, limits and Conclusion

Dispersion Suppression and Tune:

- n *2 Pi phase advance in the arcs (more or less determines the tune and phase advance)
- modified "missing bend" scheme

Twiss Parameters \rightarrow Aperture:
Shorter (more) cells \rightarrow smaller twiss functions \rightarrow smaller aperture

Injection Requirements:

FODO cell with QD in straight: 2*2.6 m straight section
Straight section without QD: 6.2 m straight section

Gamma Transition:

not so clear, we considered gammat>3.6 $($ gamma $(2 \mathrm{GeV})=3.13)$
Number of quadrupole families:
until now 2 families, more families would provide more flexibility (e.g. working point adjustment) and smaller twiss functions

1/7 CIRC(PS) (NOT MANY CHOICES)

in general:

- high dipole filling factor required
\rightarrow FODO lattice (best for lattices requiring a high dipole filling factor. E.g. doublet or triplet require higher quadrupole strength (\rightarrow longer quads, less space for dipoles) .
\rightarrow Dispersion suppression with n*2 Pi phase advance in the arcs. Other dispersion suppressor schemes require missing bends or reduced bending strength
\rightarrow in our case implies three-fold symmetry (Inj./Extr./RF), other symmetries are less space efficient.
\rightarrow minimum number of cells (trade off between aperture and dipole filling factor)
\rightarrow to reach a high enough gammat and low enough twiss functions a high phase advance is required

1/7 Circ(PS) - Triangle - FODO

15 cell FODO Lattice, Dispersion Suppression via 2Pi phase advance/arc

Miriam Fitterer - BE/ABP

1/7 Circ(PS) - Triangle - FODO+Doublet

15 cell FODO+Doublet Lattice, Dispersion Suppression via 2Pi phase advance/arc

\star little space left for multipoles, diagnostics etc.
\star high residual dispersion in straight section (maybe improvable with more ind. quads)
\star "free" straight section for Inj./Extr.

Q_{H}	4.2817
Q_{v}	3.57
Gamma Transition	4.06
$\mathrm{D}_{\mathrm{x}, \text { max }}$ (straight)	0.88 m
phase advance per cell (x/y)	approx. $103^{\circ} /$ 86°
$\beta_{\mathrm{x}, \max } \beta_{\mathrm{y}, \max }$	$11.35 / 12.23 \mathrm{~m}$
$\mathrm{D}_{\mathrm{x}, \text { max }}$	2.48 m
QF/QD FODO $(0.5 \mathrm{~m}$ length $)$	$10.7 / 8.73 \mathrm{~T} / \mathrm{m}$
QF/QD Doublet $(0.5 \mathrm{~m}$ length $)$	$14.52 / 9.85 \mathrm{~T} / \mathrm{m}$
Dipole field $(1.87 \mathrm{~m}$ length $)$	1.3 T

4/21 CIRC(PS) (A BIT MORE FLEXIBLE)

in general:

- dipole filling factor:
\rightarrow FODO and doublet lattice as basic choices
\rightarrow Dispersion suppression with $n * 2$ Pi phase advance in the arcs or missing bend scheme
$\rightarrow 2,3$ or 4 -fold symmetry
\rightarrow Could consider going to a higher number of cells
- aperture:
\rightarrow at least equivalent number of cells as for 1/7 PS circumference
15 cells $* 4 / 3=20$

4/21 Circ(PS) - Racetrack/Square - FODO

	Square	Racetrack
\# cells	20	
\# cells/straight sec.	1	2
straight section	$2 * 2.49 \mathrm{~m}$	$4 * 2.49 \mathrm{~m}$
d(Quad-Dip)	0.89 m	0.89 m
phase adv./cell (h/v)	$95 / 98$	$95 / 98$
$\mathrm{Q}_{\mathrm{H}} / \mathrm{Qv}_{\mathrm{v}}$	$5.28 / 5.46$	$5.28 / 5.46$
γ_{T}	4.96	4.99
$\beta_{\mathrm{x}, \text { max }} / \beta_{\mathrm{y}, \text { max }}$	$10.09 / 11.20 \mathrm{~m}$	$10.13 / 10.29 \mathrm{~m}$
$\mathrm{D}_{\mathrm{X}, \text { max }}$	2.55 m	2.84 m
Vert. Accept. Dip.	33.5 mm	31.9 mm
Hor. Accept. Quad.	68.0 mm	70.2 mm

\star similar optics for racetrack and square
\star enough space for multipoles etc.
\star small residual dispersion with adjusted tunes
\star high gammat
\star tight for Inj./Extr.

4/21 Circ(PS) - Triangle

Based on: Design of low energy ring(s), Internal Task Note, Antoine Lachaize, André Tkatchenko

* higher gammat and slightly smaller aperture with doublet
\star tune chosen to have no dispersion in straights
\star no real advantage by going to 24 cells (same aperture, but smaller phase advance per cell)
\star dispersion suppression does reduce considerably the aperture requirements, but reduces the space in the DS free straight sections

4/21 Circ(PS) - Triangle

	FODO (QD in Straight)			Doublet		
\# cells	21		24	21 (DS suppr.)	21	24
\# cells/straight sec.	2	1	2	1	2	2
straight section	$4 * 2.55 \mathrm{~m}$	$2 * 2.55 \mathrm{~m}$	$4 * 2.09 \mathrm{~m}$	$2 * 2.20 \mathrm{~m}$	$2 * 4.30 \mathrm{~m}$	$2 * 3.59 \mathrm{~m}$
d(Quad-Dip)	0.75 m	0.75 m	0.65 m	0.5 m	0.90 m	0.69 m
phase adv./cell (hor.)	72	60	61	91	72	61
phase adv./cell (vert.)	68	63	59	69	70	61
Q_{H}	4.205	3.5	4.05	5.29	4.206	4.05
Q_{v}	3.95	3.7	3.95	4.05	4.05	4.05
γ_{T}	3.64	3.32	3.60	4.8	3.77	3.66
$\beta_{\mathrm{x}, \text { max }}$	8.97 m	9.64 m	8.23 m	9.95 m	8.08 m	7.55 m
$\beta_{\mathrm{y}, \text { max }}$	10.84 m	10.03 m	9.10 m	11.34 m	9.03 m	8.47 m
$\mathrm{D}_{\mathrm{x}, \text { max }}$	3.75 m	4.73 m	3.99 m	1.83 m	3.77 m	3.84 m
Vert. Accept. Dip.	33.6 mm	32.8 mm	31.6 mm	33.7 m	32.2 mm	31.4
Hor. Accept. Quad.	74.6 mm	83.4 mm	74.6 mm	62.3 mm	72.1 mm	72.0 mm

CONCLUSION AND OUTLOOK

Different lattices give a rough guess about the feasibility of a RCS, but more detailed studies

 are needed.
e.g. next step:

- play with more quadrupole families to reduce twiss functions, especially dispersion, and adjust the working point
- include multipoles, skew quads etc.
- space charge

