Investigation of coupling in the SPS

Androula Alekou
Many thanks to Y. Papaphilippou and H. Bartosik

Outline

- Introduction
- need for non-local fast extraction from LSS2
- 'coupling' observed during MD
- Steps towards reproducing that 'coupling'
- Conclusion

Introduction

- SPS has 6 long straight sections (LSS): LSSI-LSS6

Introduction

- SPS has 6 long straight sections (LSS): LSSI-LSS6
- LSS2, LSS4 and LSS6 are the three extraction channels

Introduction

- SPS has 6 long straight sections (LSS): LSSI-LSS6
- LSS2, LSS4 and LSS6 are the three extraction channels

- 2 neutrino experiments proposed for the future SPS operation: CERN Neutrino Facility (CENF) and Large Apparatus studying Grand Unification and Neutrino Astrophysics (LAGUNA)
- CENF and LAGUNA require high-intensity and high-energy beam (I00 and 400 GeV respectively) to be extracted in one machine revolution from LSS2

Introduction

- SPS has 6 long straight sections (LSS): LSSI-LSS6
- LSS2, LSS4 and LSS6 are the three extraction channels

- 2 neutrino experiments proposed for the future SPS operation: CERN Neutrino Facility (CENF) and Large Apparatus studying Grand Unification and Neutrino Astrophysics (LAGUNA)
- CENF and LAGUNA require high-intensity and high-energy beam (I00 and 400 GeV respectively) to be extracted in one machine revolution from LSS2

Introduction

- LSS2 always used for slow extraction; no kickers installed in it
- Very difficult to integrate kickers in LSS2; how to extract beam from this LSS?
- New approach for SPS: non-local fast extraction: use one of the already installed kickers in another LSS to perform a singleturn extraction from LSS2
- For the 100 GeV study, the injection kicker in LSSI (MKP) has been chosen

- Simulations completed

circulating beam envelope (bumpers ON, kickers OFF) extracted beam envelope (bumpers ON, kickers ON)

- Machine Development tests (MD) of fast extraction from LSS2 (using kickers of LSSI) done (Sept/Oct20I2)

[^0] Androula Alekou, androula.alekou@cern.ch, LIS meeting 29jul20I3

Introduction

- Since the kickers are H the behaviour of the beam in the V-direction should remain unchanged after the kickers were switched ON. So:
- Subtraction of \mathbf{H} trajectory_whenKickersON minus trajectory_whenKickersOFF should be non-zero
- Subtraction of \mathbf{V} trajectory_whenKickersON minus trajectory_whenKickersOFF should be zero
- Snapshot during MD (I8Sept2012) given by BT team

 monitor number
"subtraction of trajectory when kickers were ON minus trajectory when kickers were OFF"
- Snapshot during MD (I8Sept2012) given by BT team
 $\mathrm{H} / \mathrm{V}[\mathrm{mm}] \uparrow$ monitor number
this should be zero. Since it's not coupling is implied between the H and V direction
"subtraction of trajectory when kickers were
ON minus trajectory when kickers were OFF"

Coupling?

- Is there coupling between the H and V direction?
- What can create this coupling?
- Quadrupole tilts
- Shifted sextupoles in y (gives skewed quadrupole magnetic field component)

Coupling?

- Is there coupling between the H and V direction?
- What can create this coupling?
- Quadrupole tilts
- Shifted sextupoles in y (gives skewed quadrupole magnetic field component)

Reproduce the coupling using MAD-X and PTC. Understand what creates it


```
ैं
O
uce

\section*{Trajectories can be obtained with PTC_Trackline}
Need trajectories from LSSI to LSS2 when kickers are ON and OFF to get the subtraction plot
```

We don't have trajectory data. We have closed orbit data

Trajectories can be obtained with PTC_Trackline

Need trajectories from LSSI to LSS2 when kickers are ON and OFF to get the subtraction plot

Trajectories can be obtained with PTC_Trackline

Need trajectories from LSSI to LSS2 when kickers are ON and OFF to get the subtraction plot

CORRECT method finds necessary correctors that

 Ureproduce closed orbit of MD.When applied they should F also reproduce trajectory when PTC_Trackline is used

Steps followed in order to reproduce the coupling snapshot

a. Using MAD-X:
a.a. find what correctors are needed in order to match/reproduce the CO measurement when bumpers and kickers are OFF; apply these corrections

bumpers OFF kickers OFF

70* correctors are used $\Delta \mathrm{rms}($ measurements-madx $)=\mathrm{O}(-5 \mathrm{~m})$ in H and V

very good agreement between madx and measurements

bumpers OFF kickers OFF

 noworries, broken monitisg70* correctors are used $\Delta r m s(m e a s u r e m e n t s-m a d x)=O(-5 \mathrm{~m})$ in H and V

IMPORTANT NOTE

- YASP (Yet Another Steering Application) has fewer BPMs than MAD-X. Only those in common were used. The others were set to zero in the target file*
- From the monitors in common, some are broken and were not taken into account during the correction (i.e. those monitors were switched OFF in MAD-X) ${ }^{* *}$
*all BPMs need to be included in the target file otherwise the correction does not work properly. They should be included in s-increasing order (as outputted by MAD-X)
**They were not set to zero in the target file though. To set monitors OFF use command: USEMONITOR, STATUS=OFF, RANGE="BPA.<numberOfMonitor>";

Number of Correctors

- Number of correctors has not been optimised
- empirical trials: Δ rms 70 correctors slightly better than 97*

*for >97 correctors the twiss file returns back with error (I cannot explain this as nBPM's is >97; interesting to look into).

Steps followed in order to reproduce the coupling snapshot

a. Ysing MAD-X:
a.a. find what correctors are needed in order to match/reproduce the CO measurement when bumpers and kickers are OFF; apply these corrections
a.b. switch ON bumpers. Confirm the same CO as the measurements when bumpers are ON is obtained (i.e. verify the corrections applied in previous step are correct)

Bumpers

Bumper	Strength [rads]	s-position [m]	
MPSH. 21202	1.63E-06	1534.205	
MPLH. 21431	3.08E-04	\|604.468	
MPNH. 21732	3.75E-04	1701.1133	
MPLH. 21995	I.5IE-04	1787.5547	
MPLH. 22195	-I.56E-04	1851.4998	

When these bumpers are switched ON they give 27 mm bump at the entrance of the TPST (extraction channel of LSS2)

measurements; bumpers OFF measurements; bumpers ON simulation; bumpers OFF simulation; bumpers ON broken monitors

■very good agreement between MAD-X and measurements (CORRECT command works well); $\Delta \mathrm{rms}=\mathrm{O}(-5)$ in H and $\mathrm{O}(-4)$ in V^{*} ■before and after bumpers area: CO when bumpers are OFF same as when the bumpers are ON
*when measurements of $s=1727.329 \mathrm{~m}$ and $\mathrm{s}=1695.1633 \mathrm{~m}$ are excluded in H and V respectively

Steps followed in order to reproduce the coupling snapshot

a. Ysing MAD-X:
a.a. find what correctors are needed in order to match/reproduce the CO measurement when bumpers and kickers are OFF; apply these corrections
a.b. switch ON bumpers. Confirm the same CO as the measurements when bumpers are ON is obtained (i.e. verify the corrections applied in previous step are correct)
b. Using PTC_Trackline:
b.a. get the trajectories when the bumpers are ON and kickers are OFF; confirm they agree with MAD-X

MAD-X vs PTC Trackline

bumpers ON kickers OFF

Steps followed in order to

 reproduce the coupling snapshota. Using MAD-X:
a.a. find what correctors are needed in order to match/reproduce the CO measurement when bumpers and kickers are OFF; apply these corrections
a.b. switch ON bumpers. Confirm the same CO as the measurements when bumpers are ON is obtained (i.e. verify the corrections applied in previous step are correct)
b. Using PTC_Trackline:
b.a. get the trajectories when the bumpers are ON and kickers are OFF; confirm they agree with MAD-X
b.b.get the trajectories when the bumpers and kickers are ON
c. plot the H / V subtraction (PTC_TRACKLINE_bumpersON_kickersON minus PTC_TRACKLINE_bumpersON_kickersOFF)
d. try to reproduce order of magnitude of coupling by rotating the quadrupoles (starting from the ones after the kickers)

Switching ON the LSSI kickers

Kicker	Strength [rads]	s-position [m]
MKPA.II93I	0.000255417	613.3839
MKPA.II936	0.000255417	617.0059
MKPC.II952	0.000102167	619.8064

Using GIMP

- There were no data saved for when the kickers were turned ON
- All we have is a snapshot that "shows the V-trajectory subtraction" (kickers ON minus kickers OFF)
- Using GIMP I found the snapshot's coordinates
- Important: the monitors of MAD-X and YASP are not I-to-I (MAD-X has more monitors)
- A "translation" is needed

example of "translated" monitors

subtraction of H trajectories (kickers ON minus kickers OFF)

example of "translated" monitors

subtraction of H trajectories (kickers ON minus kickers OFF)

[w] \times

 Good agreement between GIMP (data approximation) and PTC subtraction
 monitor number

monitor number

Realising something goes wrong

- "Coupling" starts from monitor II
- This means the "coupling" is due to a rotation of quadrupole QFA. l 1810 (closest element (quadrupole/sextupole) to monitor II from the left)

Realising something goes wrong

- "Coupling" starts from monitor II
- This means the "coupling" is due to a rotation of quadrupole QFA. 11810 (closest element (quadrupole/sextupole) to monitor II from the left)

- ...But QFA. 1 I 8 I 0 is at $\mathrm{s}=577.50 \mathrm{I} 2 \mathrm{~m}$, i.e. before the first kicker (MKPA. II93I, s@613.3839 m)
- ...And in order to see coupling, the rotated quadrupole or shifted sextupole should be after the kicker

Realising something goes wrong

- "Coupling" starts from monitor II
- This means the "coupling" is due to a rotation of quadrupole QFA. 11810 (closest element (quadrupole/sextupole) to monitor II from the left)

- ...But QFA. 1 I 8 I 0 is at $\mathrm{s}=577.50 \mathrm{I} 2 \mathrm{~m}$, i.e. before the first kicker (MKPA. II93I, s@613.3839 m)
- ...And in order to see coupling, the rotated quadrupole or shifted sextupole should be after the kicker

Realising something goes wrong

- "Coupling" starts from monitor II
- This means the "coupling" is due to a rotation of quadrupole QFA. 11810 (closest element (quadrupole/sextupole) to monitor I I from the left)
- ...But QFA.l|8I0 is at $s=5$ i.e. before the first kic
I 1931 , s@613.3839 m)
- ...And in order to see coupling, the rotated quadrupole or shifted sextupole should be after the kicker

ptc_subtraction GIMP

ptc_subtraction GIMP

ptc_subtraction GIMP

ptc_subtraction GIMP

ptc_subtraction GIMP

$\underset{\chi}{\underset{\lambda}{\Xi}}$

Still, there is some coupling (smaller, $O(-4)$ and starts later)

Can that come from sextupoles?
Switch off sextupoles and check if V-subtraction gives zero

Switching OFF the sextupoles

$O(-6) m$ (from $O(-4) m$ when sextupoles were ON)

If that snapshot was showing a real coupling, how could we eliminate it?

If that snapshot was showing a real coupling, how could we eliminate it?

apply quadrupole rotation on QF.I2010, i.e. the quadrupole just after the kickers (s=641.4966 m)

Steps followed in order to

 reproduce the coupling snapshot
a. Using MAD-X:

a.a. find what correctors are needed in order to match/reproduce the CO measurement when bumpers and kickers are OFF; apply these corrections
a.b. switch ON bumpers. Confirm the same CO as the measurements when bumpers are ON is obtained (i.e. verify the corrections applied in previous step are correct)
b. Using PTC_Trackline:
b.a. get the trajectories when the bumpers are ON and kickers are OFF; confirm they agree with MAD-X
b.b.get the trajectories when the bumpers and kickers are ON
c. plot the H / V subtraction
(PTC_TRACKLINE_bumpersON_kickersON minus
PTC_TRACKLINE_bumpersON_kickersOFF)
try to reproduce order of magnitude of coupling by rotating the quadrupoles
(starting from the ones after the kickers)
Androula Alekou, androula.alekou@cern.ch, LIS meeting 29jul20I3

Bug found

MAD-X markers have a bug:

As soon as markers are installed the values of the twiss parameters change. The change is only significant when the CORRECT command is used.

This observation was sent to the madx group and was confirmed to be a bug
(by Andrea Latina and Ghislain Roy, I2June2013).

Summary \& Conclusion

- CENF and LAGUNA require high-intensity and high-energy beam (I00 and 400 GeV respectively) to be extracted in one machine revolution from LSS2
- Non-local fast extraction uses installed kickers in another LSS to perform singleturn extraction from LSS2
- "Coupling" was observed when switching ON the H-kickers in the LSSI section
- MADX and PTC were used to reproduce the observed "coupling"
- Conclusion: there is no coupling of significant order of magnitude. The snapshot was the absolute trajectory in H and V when the kickers were ON
- There was a small coupling coming from the sextupoles (was minimised as soon as the sextupoles were switched OFF)
- If the snapshot was indeed representing coupling then a combination of QF. 120 I 0 rotation by 0.0 I and 0.05 radians could reproduce the same order of magnitude of that "coupling"
- Finishing up a note with all details

Thank you!

Any questions?

Backup slides

- No kicker installation at LSS2 due to the difficult integration with the electrostatic septum and to avoid increasing the overall machine impedance

Table 1: Phase advance between kickers and TPST (protection device of the MST in LSS2) obtained with MAD-X.

Kicker	$\boldsymbol{\Delta} \boldsymbol{\mu}$	$\boldsymbol{\Delta} \boldsymbol{\psi}[\mathrm{deg}]$	$\boldsymbol{Q}_{\boldsymbol{x}}$
MKQH.11653	4.63	226.51	26.62
MKQH.11653	4.54	195.52	26.13
MKP.11955	4.19	68.22	26.62
MKP.11955	4.11	40.45	26.13
MKE.41637	17.95	340.18	26.62
MKE.41637	17.61	220.95	26.13
MKE.61634	9.07	24.29	26.62
MKE.61634	8.90	323.94	26.13

- LSSI: QFA.II6I0-QF. I20I0 (5 | $3.5057-64 \mid .4966$)
- LSS2: QF.2I6I0-QF.220I0 (I665.423I-I793.4I39)
- LSS3: QF.3I6I0-QF. 32010 (28I7.3404-2945.33I2)
- LSS4: QF.4I6I0-QF.420IO (3969.2577-4097.2485)
- LSS5: QF.5I6I0-QF.520I0 (5I2I.I75-5249.I658)
- LSS6: QF.6I6I0-QF.620I0 (6273.0923-640I.083I)

NOTE

- if there were monitors that were clearly giving wrong measurement of CO they were not taken into account but the measurement was NOT set to zero in the target file

monitor "translation"

monitor YASP	monitor MADX
10	10
11	11
12	13
13	14
14	15
15	16
16	18
17	19
18	21
19	22
20	23
21	24
22	25
23	27
24	29
25	30
26	31
27	36
28	37
29	38
30	
31	

V

monitor YASP	monitor MADX
11	11
12	12
13	14
14	16
15	17
16	18
17	21
18	22
19	23
20	24
21	25
22	28
23	29
24	30
25	34
26	
27	

I stBumper $=1534.205 \mathrm{~m}$s_IstKicker=613.3839 ms_IstSeptum $=1733.806 \mathrm{~m}$

Simulations for LSSI-LSS2
 extraction (F.Velotti)

Extraction region

Extraction bump and trajectory
$110 \mathrm{GeV}, 8 \mathrm{um}, \pm 5 \sigma$ envelopes

[^0]: N. Simulations from F.Velotti; IPACI3 http://accelconf.web.cern.ch/accelconf/IPAC20 13/papers/mopfi050.pdf

