

Status of the HPPS studies

Javier Alabau-Gonzalvo, Androula Alekou, Fanouria Antoniou, Yannis Papaphilippou

Outline

- Introduction
- Layout and parameters
- Optics studies
- Magnet design
- Collimation
- Impedance budget
- Summary and next steps

HPPS

- HPPS: High Power Proton Synchrotron
- 50/75 GeV 2MW p-beam for neutrino studies (LAGUNA-LBNO)

HPPS

- HPPS: High Power Proton Synchrotron
- 50/75 GeV 2MW p-beam for neutrino studies (LAGUNA-LBNO)
- Present:

HPPS

- HPPS: High Power Proton Synchrotron
- 50/75 GeV 2MW p-beam for neutrino studies (LAGUNA-LBNO)
- Linac 4 upgrade:

Beam Power

$$P = qf_r E_k N_p \longrightarrow 2MW$$

- High repetition rate (f_r)
 - Maximum rep rate defined by source/linac (2Hz for LINAC4)
 - Drives magnet ramp rate (magnet design and elect. consumption)
- High energy (E_k)
 - For fixed magnetic field, it is proportional to circumference (cost)
 - For fixed circumference, proportional to magnetic field at extraction, linked also to ramp rate (magnet technology)
- High pulse population (N_p)
 - Through space-charge limit (impose tune-shift < 0.2) minimum emittance values and thereby constrains geometrical acceptance, for given ring optics (magnet technology, losses control, collimation system)
 - Can be reduced for higher rep. rate and/or energy

Layout

- Design based and adapted from PS2
- 2 options (50 and 75 GeV), based on same optics layout

- **3-fold symmetric** ring to accommodate in separate LSS the injection/ extraction, collimation and RF
- **Negative Momentum Compaction (NMC) arc cell** necessary to avoid transition (remain always below) and reduce losses. Use **resonant** arcs to increase filling factor (no Dispersion Suppressors)
- **Doublet Long Straight Section (LSS)** leave more space for BT equipment, collimation and RF

CERN Desig 2 opt • NMC cell R=80m 3-fol extra avoid Nega ٠ **it** arcs transi Straight section to inc Bending elementsFocusing quads Doul Defocusing quads equip

9

Layout and parameters

Layout

- Design based and adapted from PS2
- 2 options (50 and 75 GeV), based on same optics layout

- **3-fold symmetric** ring to accommodate in separate the LSS injection/ extraction, collimation and RF
- **Negative Momentum Compaction (NMC) arc cell** necessary to avoid transition (remain always below) and reduce losses. Use **resonant** arcs to increase filling factor (no Dispersion Suppressors)
- **Doublet Long Straight Section (LSS)** leave more space for BT equipment, collimation and RF

Layout and parameters

CERN

2

3

ex

Ν

tra

to

D

eq

- 5 resonant NMC arc cells with horizontal phase advance tuned to 8π for disp. suppression
 - High dispersion reduce strength of sextupoles. 2 sext families. Very good non-linear dynamics performance
 - Due to space constraints can only achieve 41GeV for dipole field of 1.7T (limit for iron dominated magnets)
 - Need super-ferric magnets @ 2.1T to reach 50GeV

Layout

- Design based and adapted from PS2
- 2 options (50 and 75 GeV), based on same optics layout

- **3-fold symmetric** ring to accommodate in separate the LSS injection/ extraction, collimation and RF
- **Negative Momentum Compaction (NMC) arc cell** necessary to avoid transition (remain always below) and reduce losses. Use **resonant** arcs to increase filling factor (no Dispersion Suppressors)
- **Doublet Long Straight Section (LSS)** leave more space for BT equipment, collimation and RF

Layout

- Design based and adapted from PS?
- Quadrupole doublet LSS leave more space for beam transfer (BT) equipment, collimation and RF
- 73.5 m length per straight section
- 4 quad families are used for achieving horizontal optics constraints (BT equipment, collimator,...) and general tuning
- Horizontal tunability provided only by LSS, vertical is flexible

equipment, collimation and RF

Parameters

Parameter	HP	-PS
Circumference [m]	11	74
Symmetry	3-f	old
Beam Power [MW]		2
Repetion Rate [Hz]	-	1
Kinetic Energy @ inj. [GeV]	2	1
Kinetic Energy @ ext. [GeV]	50	75
Protons/pulse [10 ¹⁴]	2.5	1.7
Dipole ramp rate [T/s]	4.2	5.9
Bending field @ext [T]	2.09	3.13
Max. quad field [T]	1.36	1.82
Dipole gap height [mm]	111	92
Norm. emit H/V [um.rad]	15/12.8	10.6/8.3

Layout and parameters

Parameters

Parameter	НР		
Circumference [m]	11		
Symmetry	3-f		
Beam Power [MW]	2	2	
Repetion Rate [Hz]	1		
Kinetic Energy @ inj. [GeV]	4		
Kinetic Energy @ ext. [GeV]	50	po do	
Protons/pulse [10 ¹⁴]	2.5	1.7	eff
Dipole ramp rate [T/s]	4.2	5.9	• mo
Bending field @ext [T]	2.09	3.13	
Max. quad field [T]	1.36	1.82	
Dipole gap height [mm]	111	92	
Norm. emit H/V [um.rad]	15/12.8	10.6/8.3	

nario:

- ore demanding beam namics (higher bunch pulation \rightarrow more minated by collective ects)
- ore conventional magnet rameters

Layout and parameters

Parameters

Parameter	HP	P-PS	
Circumference [m]	11		
Symmetry	3-1	fold	
Beam Power [MW]		2	
Repetion Rate [Hz]		1	HE scenario:
Kinetic Energy @ inj. [GeV]		4	 required pulse intensity reduces from 2.5 to 1.7E14
Kinetic Energy @ ext. [GeV]	50	75	p ⁺ • demanding magnet
Protons/pulse [10 ¹⁴]	2.5	1.7	technology (high
Dipole ramp rate [T/s]	4.2	5.9	neid+ramp rate)
Bending field @ext [T]	2.09	3.13	
Max. quad field [T]	1.36	1.82	
Dipole gap height [mm]	111	92	
Norm. emit H/V [um.rad]	15/12.8	10.6/8.3	

Space Charge detuning

$$\delta Q_{x,y} = -\frac{N_b r_e}{(2\pi)^{3/2} \beta^2 \gamma^3 \sigma_s} \oint \frac{\beta_{x,y}}{\sigma_{x,y}(\sigma_x + \sigma_y)} ds$$

- Intensity limited by space-charge and other collective effects, especially at injection flat bottom
- Calculation of the linear part of the space charge detuning (Laslett) for Gaussian bunches (pessimistic consideration)
- Beam considered as for the PS2 with a 25 ns bunch structure, 17.8 ns bunch length and 6.43e-3 energy spread.
- For keeping space-charge tune-shift below -0.2, the vertical emittance has to be increased accordingly and transverse acceptance reduced

Space Charge detuning

• Nominal working point: Qx=13.24, Qy=7.21

- The Lasslett tune shift up to 4σ and for emittance values of $\ \epsilon x$ =10 um.rad and ϵy =8 um.rad
- Crossing of the (2, -2) resonance

Space Charge detuning

Emittance area parametrized with H and V space-charge tune shift

Small vertical beam size chosen since vertical acceptance more critical.¹⁹

Geometrical acceptance

Emittance area parametrized with dipole gap height

$$R^{\min}_{x,y} = n_{\sigma_{x,y}} \sqrt{\beta_{x,y}} \varepsilon_{x,y} + \eta_{x,y} \left(\frac{\delta p}{p_0}\right)_{\max}$$

- R^{min}: the minimum beam pipe radius to fit all the particles
- Calculations done at 4.5 σ in both planes

Magnet parameters

50 GeV HPPS

Туре	Length [m]	Strength [m ⁻²]	B _{pt} [T]	R _{xy} [mm]*	Number of type 1: 18
Type1 (LSS)	2	-0.0832	-0.89	63	Number of type 2:
Type2 (ARC)	1.4	-0.0657	-0.55	49	Number of type 3:
Type3 (ARC)	1.1	-0.0424	-0.42	58	48
Type1 (LSS)	2	-0.0136	-0.15	63	30
Type3 (ARC)	1.1	0.0494	0.49	58	
Type1 (LSS)	2	0.07	0.75	63	Total number: 126
Type4 (ARC)	2.4	0.1142	1.36	70	

Dipole characteristics (135 dipoles):

B = 2.1 T with Ramp rate: 3.82 T/s Max gap_x = 145.7 mm Max gap_y = 110.9 mm

*Beam pipe thickness considered: 8mm

Magnet parameters

75 GeV HPPS

Туре	Length [m]	Strength [m ⁻²]	B _{pt} [T]	R _{xy} [mm]*	Number of type 1: 18	
type1	2	-0.0832	-1.1	52	Number of type 2:	
type2	1.4	-0.0657	-0.73	44	Number of type 3:	
type3	1.1	-0.0424	-0.54	50	48	
type1	2	-0.0136	-0.18	52	Number of type 4:	
type3	1.1	0.0494	0.63	50		
type1	2	0.07	0.92	52	Total number: 126	
type4	2.4	0.1142	1.82	63		
Dipole characteristics (135 dipoles): B = 3.13 T with Ramp rate: 5.9 T/s Max gap_x = 132.6 mm Challenging *Beam pipe thickness considered:						

8mm

Tunability studies

Long straight section tunability

Arc quadrupoles fixed, LSS quadrupoles varied and only stable solutions are kept (around 30k cases studied)

- Parameterization of the **horizontal and vertical tunes of the ring with the maximum** horizontal (left) and vertical (right) beta functions
- Resonances up to 4th order are shown
 - Systematic resonances are shown in black while non systematic in pink. The normal resonances are shown with solid lines while the skew ones with dashed lines. 23

ERN

24

Tunability studies

Global tunability

• The vertical phase advance μ_y of the arc is rematched. For each μ_y the LSS quad strengths are scanned (around 30k cases studied for each phase advance)

- Parameterization of the transition energy with the horizontal and vertical tunes and max dispersion (projection on top plot)
 - Strong dependence on the max dispersion (as expected)
 - Smaller γ_t for larger dispersion

Orbit correction

• Evaluate efficiency and performance of orbit correction system.

Applied random errors (Gaussian cut at 3 sigma)	RMS (following PS2 experience)
Relative dipole field error	5.00e-4
Transverse quadrupole shift	0.2 mm
Longitudinal dipole shift	0.3 mm
Dipole tilt	0.3 mrad

Х

y

order of magnitude

Maximum kicks well within limits

26

Dynamic Aperture studies

Closed Orbit correction

- On and off momentum DA calculations after CO correction (100 seeds (gray))
- Very large DA, not limited by orbit errors.

Dynamic Aperture studies

Multipole field errors

- On and off momentum DA calculations including field errors, CO correction, chromaticity correction and rematching of tunes to ideal lattice (100 seeds)
- DA dominated by multipole field errors but still very comfortable.

Order	Dipoles	(R=3 cm)	Quadru	poles (R=5.95 cm)	Sextupo	les (R=5.95 cm)
	mean	random	mean	random	mean	random
n	b_n/b_1	b_n/b_1	b_n/b_2	b_n/b_2	b_n/b_3	b_n/b_3
1	10^{4}	5	0	0	0	0
2	0.15	0.1	10^{4}	5	0	0
3	1	0.5	-2	1	10^{4}	5
4	0.013	0.064	1	1	-0.5	1.5
5	-0.1	0.064	1	1.5	0.5	1.5
6	-0.003	0.003	3	1	-1	0.5
7	-0.026	0.005	0.5	1	1	0.5
8	0.001	0.001	0.5	0.5	0.5	0.5
9	-0.004	0.001	0.1	0.3	-4	0.3
10	-	-	0.5	0.3	0.1	0.5
11	-	-	0.1	0.3	0.1	0.5

Ref. PS2 CDR (H. Bartosik): Relative multipole components in units of 10-4 at the reference radius R.

Super-ferric dipoles

- For iron dominated dipoles of 1.7 T (limit for this kind), ring could only achieve 41 GeV
- Necessary to use super-ferric magnets
 - SF magnet: Warm iron dominated magnet with super conducting coils
 - Proto-type was built and tested successfully (for PS2, also considered in SIS synchrotron, FAIR project).
 - The CERN magnet group is interested to further develop this technology and push the performance with the help of the HP-PS design team.
 - 2.1 T and 3.82 T/s ramp rate for 50 GeV; 3.1 T and 5.95 T/s for 75 GeV

Collimation

- Collimators to avoid magnet quenching, limit the equip radiation and localise slow losses.
- Scrapper-absorber scheme similar to PS2 one.
- **Optimum position** of absorber wrt scrapper:

$$\cos(\Delta\mu_{a,1,opt}) = \frac{N_s}{N_a}$$

$$Ns=2.5, Ns=3 \longrightarrow \Delta\mu_{a,1}: 33.5^{\circ} \Delta \mu_{a,2}: 146.4^{\circ}$$

$$\Delta\mu_{a,2,opt} = \pi - \Delta\mu_{a,1,opt} \qquad (From PS2) \qquad (Ideal position)$$

Ns, Na: normalised apertures of scrapper and absorber Δ $\mu a, _1, \Delta$ $\mu a, _2$: betatron phases advances of the absorbers wrt scrapper

• Preliminary available location:

- Code has been written to find losses due to aperture.
- Next step: Find optimal thickness and install collimators.

Impedance budget

First parameter estimation:

Parameter	PS2 INJECTION	PS2 EXTRACTION	HPPS-50 INJECTION	HPPS-50 EXTRACTION	
Energy[GeV]	4	50	4	50	
C[m]	134	16.4	11	74	
b[mm](pipe radius)	32	2.5	32.5		
σ_{z} [m]	1.12	0.30	4.38	4.38	
$\overline{\beta_{\mathcal{Y}}}[m]$	3	2	31.61		
$\varepsilon_{y}[\mu m rad]$	1.8	0.17	2.85	0.23	
η (slip factor)	-0.037	-0.0012	5.56e-2	8.91e-4	
σ_δ	3.2e-3	1e-3	3.8e-3	3.2e-4	
N_b	4.2	e11	18e11		
N_p	1.1	e14	2.5e14		
v_s (synch. tune)	18e-3	0.8e-3	6.13e-3	7.27e-5	
$Q_{\mathcal{Y}}$	6.71		7.21		
<i>I</i> [A]	2	.7	11.52		

31

Impedance budget

Imped	ance	PS2 Injection	HPPS-50 Injection	PS2 Extraction	HPPS-50 Extraction	
Broad band (RW+SC) Longitudinal Impedance	$\frac{Z}{n}[\Omega]$	0.39+49i	0.74- 22.80i	0.20+0.13i	0.76-0.38i	PS2 has in account 1500 vacuum flanges
Transverse kick factor	k_y [V/pC/m]	24	10.6	47	10.6	

Analytic estimations following:

"Impedance considerations for the design of the vacuum system of the CERN PS2 Proton Synchrotron", K.L.F Bane et al.

Instability		PS2 Injection	HPPS-50 Injection	PS2 Extraction	HPPS-50 Extraction
Microwave instability [Single bunch long.]	$\frac{N_{th}}{N_b}$	27	112	59	4.3
TMCI [Single bunch transverse]	$\frac{N_{th}}{N_b}$	10	2.2	2.5	0.3
TCBI [Multi-bunch transverse]	Turns	30	13	294	141

- 2 ring options for a 2MW proton beam: 50 GeV and 75 GeV.
- Space charge tune shift defines emittances and magnet aperture.
- Good working point from tunability studies.
- Dynamic aperture dominated by multipole field errors but still comfortable.
- Super-ferric dipoles are necessary. Technology already tested. 75 GeV challenging due to both high field and high ramp rate.
- Collimation system under design. First location of collimators given.
- First impedance budget calculations show some challenges to be discussed.

- Collimation system optimisation.
- Space charge studies with realistic beam distribution and including collimation system.
- Magnet design.
- Impedance budget details.
- Beam instrumentation inventory.

THANKS!

Special thanks to H. Bartosik for all the PS2 examples and help

BACKUP SLIDES

What can the LP-SPL deliver ?

• The LP-SPL base line parameters are:

Parameter	Values	Units
Kinetic Energy	4	[GeV]
Beam power	0.144	[MW]
Repetition rate	2	[Hz]
Beam pulse length	0.9	[ms]
Average pulse current	20	[mA]
Peak pulse current	32	[mA]
Protons per pulse	1.13 x 10 ¹⁴	-
Peak power per cavity	0.5	[MW]

- The present design of the LP-SPL can "only" deliver 1.13x10¹⁴ ppp.
- We need up to 2.5×10^{14} ppp.

Possible LP-SPL modifications to increase intensity / beam power

- Easy & cheap:
 - Higher repetition rate or longer pulse length.
 - Impact on modulator stored energy, increase of cryogenic load, little difference for klystrons.
- Expensive:
 - Higher pulse current.
 - Higher peak power, direct impact on klystron price.
 - If really necessary 40 mA can be made possible, but not higher.
- Very Expensive:
 - Higher energy (5 GeV instead of 4 GeV).
 - Longer tunnel more expensive hardware.....
- For the 30 GeV option the repetition rate could be increased to 3 (or 4) Hz:
 - Reduce intensity per pule
 - 2 (3) pulses for HP-PS, 1 pulse for Existing complex
 - HP-PS would need to pulse at 3 (or 4) Hz rate too, with 1 pulse idle.
- Increasing the pulse length by a factor 2 to 2.5 is feasible and brings the 50 and 75 GeV requirements in reach.

Quadrupole aperture radius

The maximum quadrupole radius for the 75 GeV (top) and the 50 GeV (bottom) options

Magnet parameters for the 50 GeV option

Туре	Length [m]	Strength [m ⁻ 2]	B _{pt} [T]	R _{xy} [mm] [*]
Type1 (LSS)	2	-0.0832	-0.89	63
Type2 (ARC)	1.4	-0.0657	-0.55	49
Type3 (ARC)	1.1	-0.0424	-0.42	58
Type1 (LSS)	2	-0.0136	-0.15	63
Type3 (ARC)	1.1	0.0494	0.49	58
Type1 (LSS)	2	0.07	0.75	63
Type4 (ARC)	2.4	0.1142	1.36	70

Dipole characteristics (135 dipoles):		Number of type 1:
		18
B = 2.1 T with	Number of type 2:	
Ramp rate: 3.82 T/s (500ms rar	30	
Max gap $x = 145.7$ mm	Number of type 3:	
Max gap_x = 140.7 mm Max gap_y = 110.9 mm		48
	12/08/13 Lis Mathpipe thio	Nomber of type 4:
	8mm	20

N 1

Magnet parameters for the 75 GeV option

Туре	Length [m]	Strength [m ⁻²]	B _{pt} [T]	R _{xy} [mm]*
type1	2	-0.0832	-1.1	52
type2	1.4	-0.0657	-0.73	44
type3	1.1	-0.0424	-0.54	50
type1	2	-0.0136	-0.18	52
type3	1.1	0.0494	0.63	50
type1	2	0.07	0.92	52
type4	2.4	0.1142	1.82	63

Dipole characteristics (135 dipoles):		18
B = 3.13 T with 5.9 T/s ramp rate		Number of type 2: 30
Max gap_x = 132.6 mm 1∕Max gap_y = 92.3 mm	12/08/13 LIS Everting pipe thic	Number of type 3: 48 Namber of type: 4:mn

Number of turne 1

Tunability studies

Global tunability

• The vertical phase advance μ_y of the arc is rematched. For each μ_y the LSS quad strengths are scanned (around 30k cases studied for each phase advance)

42

Tunability studies

Global tunability

• The vertical phase advance μ_y of the arc is rematched. For each μ_y the LSS quad strengths are scanned (around 30k cases studied for each phase advance)

- 2 RF frequencies considered for HP-PS:
 - a) High frequency: 200 MHz (similar to SPS) allows much lower bunch peak current due to the large number of bunches
 - b) Low frequency: 10 MHz (as in the PS) much more flexible tuning range
- For now: 40 MHz system considered (as in PS2) can be tunable in limited range

more about RF's from: Dr. Antoine Lachaize, "Longitudinal aspects of injection and acceleration"

Longitudinal

$$Z = (1-i)\frac{l}{2\pi b}\frac{1}{\delta_s \sigma_c}$$

Round pipe Thick wall

- *l* pipe length
- *b* pipe radius
- $\sigma_c = 1.35 \cdot 10^6 \Omega^{-1} m^{-1}$ metal conductivity (assumed SS)
- δ_s skin depth
 - $\delta_s = \sqrt{2c/Z_0 \sigma_c \omega}$ with $Z_0 = 377\Omega$ and $\omega = c/\sigma_z$ typical frequency of the bunch, σ_z the bunch length
- Important quantity for longitudinal stability Z/n with $n = \omega/\omega_0$ where ω_0 is revolution frequency

Resistive Wall Impedance

Transversal

$$k_{y} = -\langle W_{y} \rangle = \frac{3.63}{2^{3/2} \pi^{2}} \frac{cl}{b^{3} \sigma_{z}^{1/2}} \sqrt{\frac{Z_{0}}{\sigma_{c}}}$$

Kick factor

- *l* pipe length
- *b* pipe radius
- $\sigma_c = 1.35 \cdot 10^6 \Omega^{-1} m^{-1}$ metal conductivity (<u>assumed SS</u>)
- $Z_0 = 377\Omega$
- σ_z bunch length

Longitudinal

$$\frac{Z}{n} \approx i \frac{Z_0}{2\gamma^2} \left(1 + 2ln \frac{b_y}{\sigma_y} \right)$$

- γ Lorentz factor
- b_y vertical half-gap
- $\sigma_y = \sqrt{\varepsilon_y \langle \beta_y \rangle}$ typical beam size in the ring
- $Z_0 = 377\Omega$
- Purely reactive (capacitive).

Longitudinal

 $\frac{N_{th}}{N_b} \le (2\pi)^{3/2} \frac{|\eta| \sigma_z E \sigma_\delta^2}{e^2 c N_h |z/n|}$

<u>"Microwave instability"</u> Boussard criterion

- *N_{th}* number of bunch particles at threshold (very rough estimate)
- η slip factor
- σ_{δ} the energy spread
- σ_z the bunch length
- N_b the bunch population

Single Bunch Instabilities

Transversal

 $\frac{N_{th}}{N_b} \sim (0.7) \frac{4\pi E \nu_s}{e^2 N_b \overline{\beta_\nu} k_\nu}$

<u>"Transverse Mode</u> <u>Coupling Instability</u> <u>TMCI"</u>

- v_s synchrotron tune
- $\overline{\beta_y}$ average beta function

Transversal

$$\Gamma = \frac{c}{4\gamma} \frac{m_e I}{m_p I_A} \sqrt{\frac{l}{1 - [v_y]}} \langle \overline{\beta_y} A_y \rangle$$

<u>"Transverse coupled</u> <u>bunch Instability</u> Assuming only RW

- Γ the growth rate of the instability
- *I* average current assuming full ring filled with bunches
- $I_A = 17kA$
- $[v_y]$ fractional part of vertical tune
- $\overline{\beta_y}$ average beta function

•
$$A_y = \frac{4}{\pi^{1/2} b^3} \sqrt{\frac{1}{Z_0 \sigma_c}}$$