Tracking dynamic aperture with beam-beam

- At present we work on two separate studies:
 - Tune scan (now first priority):
 - different collision schemes
 - nominal and PACMAN bunches
 - with and without triplet errors (corrected)
 - preparation for tracking almost complete
 - → Dobrin
 - Linear imperfections:
 - correct for imperfections
 - \bullet orbit, collision adjustment, coupling, β -beating
 - preparation for tracking almost complete, other studies foreseen but presently suspended

Tunescan for different configurations

- Estimated computing requirements:
 - → Scan parameters: (considered as minimum):
 - Nominal and PACMAN bunches (2)
 - HH and HV crossing schemes (2)
 - **●** Tunes (80)
 - \bullet Angles (x/y) (9)
 - Seeds (60)
 - \bullet Amplitude intervalls, 2 σ steps (5)
 - means about 900000 runs, i.e. 9 million CPU hours
 - cannot be done on LSF, must use CPSS and BOINC
 - requires running on different computers and environments

Complications and required preparations

- Data processing (Eric and Dobrin):
 - New procedures for tune scan and submission
 - Monitor execution on distributed systems and execute re-submission if necessary
 - Data collection and analysis
- Consistency of results on distributed systems (Eric):
 - Results must be deterministic and reproducible
 - Requires identical floating point arithmetic on all computers
 - → Minimum impact on speed
 - Ensure compliance to IEEE-754 standard, extended to elementary functions

Linear imperfections

Basic idea (steps):

- Assign field and alignment errors on both beams
- Correct errors, simulate operation, i.e. use only information available in control room (NO matching!):
 - → Ideal model (e.g. for orbit correction)
 - \longrightarrow Knobs (e.g. for β -adjustment (adapted from W. Wittmer), tune, chromaticity, adjust collision etc.)
- Derive beam-beam elements from the two corrected beams and install them (all with MADX)
- Track one or both beams with beam-beam elements (with sixtrack) to get dynamic aperture

Problem:

- Installation of beam-beam elements must be followed by a USE command
 - → Wipes out all errors!
 - Wipes out all corrections !
 - → Must retain this feature, many users rely on that !
- Additional "features":
 - → Special treatment of correctors (a booby-trap even for well established MAD users...)
 - Two beams (all operational, but should be used with care)
- Result: large re-write of several modules in MADX necessary, invest in the future at the same time

The solution:

- Generalize treatment of MAD tables:
 - → Generic READ/WRITE of internal tables
 - Possibility to have multiple tables of the same type (but different names)
 - New commands to attach data from tables to sequence:
 - SETERR: attach errors directly to sequence, i.e. from ESAVE(d) tables (speed gain up to $\approx 10^4$)
 - SETCORR: attach corrector strength directly to orbit correctors in sequence, e.g. from external or internal tables, (was not possible before)
- En passant: several "features" fixed

Status of linear imperfections:

- MAD program is set up, most knobs are available
- New features now in official version of MAD
- Use optics version V6.4 for backward comparison (V6.5 has additional complications)
- Errors as specified by optics team, further by A. Lombardi and L. Bottura
- Tracking for dynamic aperture will start when resources are available
- For tracking use results from tune scan