Automatic Lattice Translation between MAD-X and SAD

2008-10-21
Akio Morita
KEKB Commissioning Group

Introduction

- Motivation of Development
 - MAD-X to SAD Translation
 - I want to use SAD for LHC simulation.
 - SAD to MAD-X Translation
 - Some MAD-X users request KEKB lattice written in MAD-X.
- How to Realize?
 - Develop lattice description in the other language
 - Develop general translator (My solution)
 - Write once, Apply any lattice
- What language to use for implementation?
 - SADScript language on SAD runtime environment
 - SADScript is one of functional language.
 - Turing complete (without tape length)

How to Translate?

- Parsing Input Lattice(Syntax Analysis)
 - Generate abstract syntax tree
 - MADX sequence parser is easily implemented on SADScript.
 - Support constant/element declaration and sequence directive.
 - SAD input can be directly parsed by SAD interpreter.
 - Transform into internal lattice description
 - List of beam line elements with geometry order: {name, location, length, type, type specific parameters...}
- Generate Target Description(Code Generation)
 - Key component of translator!
 - Element-to-element mapping for simple beam line element
 - Mapping to sequence of beam line elements for element emulation
 - Require knowledges of beam line element implementation about both source and target codes

Difference between SAD and MAD-X[1]

- Parameterization Strategy
 - Kn/SKn parameter
 - MAD-X use normalized field strength for thick element.
 - Integrated strength for thin element(multipole)
 - SAD use integrated normalized field strength for thick/thin element.
 - Solenoid strength
 - MAD-X use normalized field strength(ks)
 - SAD use magnetic flux density(BZ)
 - K0/SK0 semantics
 - MAD-X changes design orbit by K0/SK0.
 - SAD does not change design orbit by K0/SK0.
 - Closed orbit is changed by K0/SK0.
 - Alignment
 - MAD-X does not contain alignment information in sequence.
 - SAD contains horizontal/vertical offset of element.

Difference between SAD and MAD-X[2]

- Missing Parameter/Effect
 - SAD implements linear quadrupole fringe.
 - SAD implements vertical focusing on rectangle steering dipole (dipole corrector).
- Overlapped Solenoid
 - SAD supports overlap against drift, bend, quad and mult.
 - SAD supports solenoid tilt against beam line.
 - ▶ This feature is used by KEKB IR.
 - MAD-X does not support overlap.
 - MAD-XP supports overlap.
- Meta Information
 - MAD-X has meta information by element type
 - Monitor: hmonitor, vmonitor, monitor, instrument
 - Corrector: hkicker, vkicker, kicker
 - Bending Magnet: rbend, sbend

Difference between SAD and MAD-X[3]

- Marker Element
 - SAD mark can point to internal position of thick element.
- General-Purpose Element
 - MAD-X matrix element describes 2nd order map
 xⁱ → vⁱ + mⁱ_i x^j + tⁱ_{ik} x^j x^k
 - SAD map element describes arbitrary map by SADScript functions.
 - Turing complete!
 - Arbitrary computable beam line element MIGHT be implemented by map element.

Technical Summary

- Translation from MAD-X to SAD
 - Easy to implement.
 - Easy to make n-to-1 mapping.
 - ► Ex.) hkicker, vkicker, sbend, rbend → bend
 - Map function of element in twiss.F could be implemented by map element.
 - Meta information can not be kept.
- Translation from SAD to MAD-X
 - Difficult to implement, because of shortage of feature/parameter.
 - 1st order emulation is possible by using matrix element.
 - It means that all elements are translated into affine transformation.

Current Status of Implementation

- Round-trip translation support is impossible.
- MAD-X to SAD translation
 - LHCB1/2 lattice can be translated.
- SAD to MAD-X translation
 - KEKB arc cell can be translated.
 - MAD-XP can not be supported, because both matrix and quadrupole linear fringe are not supported.
 - KEKB LER wiggler section requires to replace bend with matrix, because of dipole kick(K0).
 - Without replacement, large closed-orbit and dispersion error are generated.
 - KEKB IR section requires to replace solenoid region with matrix, because of tilted solenoid overlap.
 - Without replacement, catastrophic closed-orbit and dispersion error are generated.

Summary

- To implement full spec. MAD-X to SAD translation is possible...
 - Need more coding and more test input!
 - I can't keep motivation...
 - ▶ LHCB1/2 translation is enough for my work.
- To improve SAD to MAD-X translation is impossible without MAD-X modification...
 - Need MAD-X hacker/maintainer to extend MAD-X.
 - I'm not MAD-X hacker.
 - Branching MAD-X source code base is bad idea.
 - MAD-XP is not enough, because PTC capability is limited by MAD-X syntax.
- Translation engine is distributed on SAD source archive.
 - Browse <Source Archives> link from http://acc-physics.kek.jp/SAD/SADrelease/
 - ► File Name: SAD-MADX-2008-09-17.tar.gz
 - No user's manul, Source code only!

Generalized Thesis of Translation

Compute the beam line element sequence which is equivalent to the given computable map f: R⁶→R⁶

- SAD can describe arbitrary map by map element.
- MAD-X can describe 2nd order map by matrix element.
- Point & Question
 - This is one of the reversed compiler!
 - Accelerator codes compile lattice description into map.
 - Can MAD-XP describe arbitrary map?
 - matrix element is not supported by PTC!
 - Can we write a general algorism without universal map?