β -beating measurement and understanding

M. Aiba, R. Calaga, M. Giovannozzi, V. Kain, F. Roncarolo, R. Tomás, G. Vanbavinckhove, J. Wenninger

Thanks to I. Agapov, S. Fartoukh, M. Lamont and F. Schmidt
LCU - January 2009

Rogelio Tomás García β -beating measurement and understanding – p.1/2

The measurement: 3 algorithms

Rogelio Tomás García β -beating measurement and understanding – p.2/20

Performance comparison

SVD wins (Rama's thesis)

The measurement of α

 α is measured as β but typically ignored.

The β -beating

Rogelio Tomás García β -beating measurement and understanding – p.5/20

Simulations versus observation

Red has uncorrelated misalignments

Black has correlated orbit \rightarrow big difference \rightarrow Blue?

Impact of closed orbit

Indeed the impact of the measured closed orbit in the beta-beating is negligible.

Error reconstruction methods

- Standard matrix inversion correction: Not satisfactory
- Iterative (model) correction^{new}: Iterate correction subtracting model betas to measured betas at every step (implemented by Masamitsu).
- Segment-by-segment^{new}: Use of measured (β, α) as initial conditions to split the LHC into segments and reduce problem dimensions (presently under development by me).

Rogelio Tomás García β -beating measurement and understanding – p.8/ β

Iterative (model) correction

6 iterations yielded quite a nice agreement!

Rogelio Tomás García β -beating measurement and understanding – p.9/20

Segment-by-segment approach

Maybe not so good agreement on the closed solution

but.

Effective correctors (integrated)

Both methods see a big error in IR3 and approx. no error in IR5 and IR8!

The power of segment-by-segment

with measured (β, α) as initial conditions

Rogelio

The power of Iterative correction

after identifying mqtli.7r3.b2 being off!

Summary & outlook

- Orbit was not the beta-beating source
- 2 new powerful methods implemented or under development to localize errors and correct
- mqtli.7r3.b2 (or mq.7r3.b2) clearly identified as error location (mqtli.7r3.b2 off?) via the segment-by-segment approach and as the leading error of the machine
- IR2 &IR7 seem to host the next leading errors (in this order)
- IR2 and the arc23 need further investigation
- IR1, IR4, IR5, IR6 and IR8 seem to be free of big errors

IR1, segment-by-segment

No important error

understanding

and

IR2, segment-by-segment

Important error

IR4, segment-by-segment

No error?

IR6, segment-by-segment

No big error?

p.18/20

IR7, segment-by-segment

Some error

Rogelio

Arc 23, segment-by-segment

Rogelio Tomás García β -beating measurement and understanding – p.20/20