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ABP-LCU Meeting 2011-03-08

Some Notes on:

Continuous LHC Beta-Beat Measurements

– Status and Prospects for 2011 – 

R. J. Steinhagen, A. Boccardi, E. Calvo Giraldo,

M. Gasior, J. L. Gonzalez, O. R. Jones, BE-BI
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Outline

Motivation – LHC dependence on known & constant beta-function
– Machine Protection and Collimation, Physics, Squeeze Diagnostics
– various existing techniques: 'kick'-type excitation & BPMs, 

K-modulation & Q-PLL, Closed-orbit-response (LOCO)
• do not achieve required resolution, and/or 
• not compatible with nominal LHC operation (ex. levels/beam intensities)

The aim of the continuous beta-beat measurement studies at the LHC was to
– provide a proof-of-feasibility for the measurement technique, and 
– to assess magnitude and time-scale of the LHC lattice changes. 

Continuous Beta-Beat system working principle

– difference to BPM-based acquisition

– Fundamental constraints and limits

– LHC installation

Some examples taken at the SPS and LHC

mailto:Ralph.Steinhagen@CERN.ch
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Compromised Machine Protection
Local Orbit Bumps & Beta-Beating

Combined failure and local orbit bumps:

Combined failure and local beta-beating:

 

 

 

 

Limits maximum safe intensity and minimum β* in the LHC
– Mitigation: tighter collimator settings (but implies less aperture → poorer life-time)

MKI

closed orbit

TCP & TCS

5.7σ 6.7σ

IR7 e.g 'bump in arc'

Potentially:
< 6.7σ

primary halo 

IR2

TDI

N
a
 [σ] 

~7.5σ

MKI TCP & TCS

IR7IR2

TDI

closed orbit

5.7σ 6.7σ

N
a
 [σ] 

~7.5σ

B) “Secondary” coll.
becomes primary

A) Potentially
< 6.7σ

triplets

Orbit-FB

Cont. β-Beat
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Collimation Performance Limitations & Constraints on β*

Two beta-beat components: 
– Static-global    → AC-dipole driven + BPMs (R. Tomas et al.)

• absorbed by the beam-based collimator alignment procedure
– Dynamic-local → continuous beta-beat system (BI, IPAC'10)

• check whether these requirements are kept in a fully dynamic case   
→ initial installation around the primary collimators in IR7

Nominal collimator settings also imply maximum um-level beam excursions 
before scraping the beam

MAC Dec 2004

Collimation inefficiency vs. β-beat

courtesy R. Assmann

need to operate here!

Coll. system
version ~ 

2002

Collimation inefficiency vs. orbit error

courtesy R. Assmann

peak-to-peak orbit error [σ]

nominal: 
Δx≈35 μm@coll

N max
min⋅Rq⋅L dil.


Lmax≈

1
4

⋅
N max⋅nb f rev

∗
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Limitations on Squeeze Diagnostic

Squeeze involves > 45 individual magnetic strength settings (Optics), so far: 
no continuous check on effective optics during/at the end of individual steps

“Classic” methods may not reach/be compatible with nominal requirements
– K-modulation induced Q-Changes:

• Limit: knowledge on quadrupole transfer function
(hysteresis, D&S, β|max ≈ 4.2km & ΔQmax<10-3 → Δk/k

nom
<5·10-5)

• Betatron-coupling, ...
• Only local (& slow) measurement

– Kick + turn-by-turn analysis of BPM (phase and/or amplitude), limits:
• Potential particle loss (beta-functions at triplet) & emittance blow-up
• Systematic phase errors, amplitude detuning/Landau damping

– large kicks may probe phase advances (dynamic aperture) which may not 
be representative for nominal beam operation

– beam will be collimated at 6 sigma  (kick amplitudes < 1.2 mm @7TeV)!
• … not ideal for continuous monitoring/regular operation (ε blow-up). 

– Closed orbit response analysis (LOCO):
• resolution/performance compatible with nominal operation
• Limit: scan requires several minutes per IP (full scan: ~2 OP-shifts)

Q ≈
1
4

⋅ s⋅ k s 

mailto:Ralph.Steinhagen@CERN.ch
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Betatron Function via Phase-Advance Measurement 

Long history at CERN. Original idea dates back to AB-BI report (doctoral thesis) 
P.Castro, Luminosity and Betatron Function Measurement at [..] LEP, CERN SL/96-70 (BI)

… beating in amplitude related to beating in phase:

Phase sampling:

Beta-Beat reconstruction (FB/Control would work with phases):

s  :=∫
0

s
1

a 
da

1
1

=
cot 12

meas. − cot 13
meas.

cot 12
theo. − cot 13

theo.

2
2

=
cot 12

meas. − cot 23
meas.

cot 12
theo. − cot 23

theo.

3
3

=
cot 23

meas. − cot 13
meas.

cot 23
theo. − cot 13

theo.




s  =
1

2 sin 2Q
∮k cos 2⋅∣s −a ∣−2Q  k a  da




s  ~




s 

45° 45°

Case I:

Case II:
0

0 0

Δμ
12

 =45° - Δφ, Δμ
13

 =90° - 2 Δφ

Δμ
12

 =45° + Δφ, Δμ
13

 =90°

Δφ -Δφ

Δφ

N.B. Phase-Beating usually used for correction!

mailto:Ralph.Steinhagen@CERN.ch
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Beta-Beat Sensitivity and Error Estimates

Residual resolution/systematic error

– ARC optics: requires error below ~1°
– IP optics:     requires error below ~0.02°

N.B. Plots have logarithmic z-scale!

45° optic Δφ
12

≈ 176° (CMS/ATLAS)

IR optic

arc optic

operational 

range

1
1

=
cot 12

meas. − cot 13
meas.

cot 12
theo.

 − cot 13
theo.



1i
meas. :=1i

theo.
1i

mailto:Ralph.Steinhagen@CERN.ch
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Beta-Beat Measurement Error Sources I/II
Statistical Phase Noise

Statistical noise adds vectorial to the carrier signal:
– excitation amplitude (carrier signal): A
– noise in time (frequency) domain:     σ

t
 (σ

f
)

– Equivalent number of turns:           N

  = arcsin  f

A  = arcsin 2N
 t

A 
≈ 2N  t

A
for small noise 
to signal ratios

σ(φ) A

σ
f

φ

Delta 1010 intrinsic phase noise@1Hz

Best case BPM+kick:
S/N=1mm/0.2mm & 
1024 turns

mailto:Ralph.Steinhagen@CERN.ch
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LHC Tune Diagnostics Instrumentation – Direct-Diode-Detection

Basic principle: AC-coupled peak detector1

– intrinsically down samples beam spectra:  GHz → kHz ('Base-Band-Tune Meter')
• Base-band operation: very high sensitivity < 10 nm/turn → ε blow-up is a non-issue

– AC-coupling removes common-mode → only relative changes play a role
• capacitance keeps the “memory” of the to be rejected signal

– robust: no saturation, self-triggered, no gain changes to accommodate single 
vs. multiple bunches or low vs. high intensity beam

However: BBQ ≠ Beam Position Monitor
– Fundamentally different acq. techniques but yielding same 'phase-advance information)
– (Analogue: TF measurement using step generator and scope vs. network analyser)

1M. Gasior, “The principle and first results of betatron tune measurement by direct diode detection”, CERN-LHC-Project-Report-853, 2005

GHz

kHz
High-/low-pass filter
→ μs group-delays

mailto:Ralph.Steinhagen@CERN.ch
http://doc.cern.ch/archive/electronic/cern/preprints/lhc/lhc-project-report-853.pdf
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Beta-Beat Measurement Error Sources II/II
Base-Band Operation and Systematic Phase Errors

Sources – usually depend on observation/excitation frequency

– Systematic delays:

• Pick-up to acquisition system cable length (e.g. 100 m@ Q
AC

=0.25 f
rev

)

– SPS: Δφ ≈ 2° LHC Δφ ≈ 0.5°: Δβ/β
sys.

≈  3-10% (45° lattice)

• However, is suppressed for relative beta-beat measurements

– Low-frequency pre-processing and analogue front-end asymmetry 
(mostly HP/LP-filters → μs-level group delays )

• Delta 1010 – analogue pre-filter: Δφ ≈ 7° (measured)

• BBQ front-end: Δφ ≈ 10° (measured, here: only Chebychev stage shown)

• Systematic drift: < 0.1° → will be further reduced

[deg ] = 360°⋅ f

f
rev

Q
ac

mailto:Ralph.Steinhagen@CERN.ch
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DAB64xDAB64xDAB64x

2010/11 Test Setup in the SPS and LHC

KISS digital acquisition:  HP Proliant 16”, 1U + M-AUDIO Delta 1010
– 8 analogue inputs/outputs, 16”, 1U

– frequency response:  20Hz-22kHz, +/-0.3dB

– >100 dB dynamic range/S/N ratio

– THD:  0.00072% (A/D), 0.00200% (D/A)

– N.B. til-date: no single-event upsets despite being 

next to the primary B1 collimators

Tests with beam in the SPS & LHC confirm that there 
is no obvious cross-talk in between the regular LHC 
WBTN (orbit) and the diode-based continuous 
beta-beat acquisition electronics.

BBQ-FE

3dB/splitter

WBTN-FE DAB64x

BPM
30++ dB isolation
in between ports

orbit

Q diag./beta-beat

allows simple filtering 
and post-processing in 
audio domain

mailto:Ralph.Steinhagen@CERN.ch
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Example: Beta-Beat/LHC BPM Prototype System in the SPS-LSS5

Measurement (markers), sinusoidal fit (solid line):

BPMB.517

BPMB.518

BPMB.519

Δμ
12

Δμ
13

BPMB.515BPMB.513 BPMB.517 BPMB.518 BPMB.519 BPMB.520

beam                                

Δμ ≈ 90° Δμ ≈ 90° Δμ≈45° Δμ≈45° Δμ≈45°

β
v
≈100 m β

v
≈100 m β

v
≈100 m β

v
≈20 m β

v
≈100 m β

v
≈100 m

1P.Castro, Luminosity and Betatron Function Measurement at [..] LEP, CERN SL/96-70 (BI)

1
1

=
cot 12

meas. − cot 13
meas.

cot 12
theo.

 − cot 13
theo.



2
2

=
cot 12

meas. − cot 23
meas.

cot 12
theo.

 − cot 23
theo.



3
3

=
cot 23

meas. − cot 13
meas.

cot 23
theo. − cot 13

theo.

mailto:Ralph.Steinhagen@CERN.ch
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QE.603/QE.604 induced β-Phase-Advance Beating

QE.603 (β = 103m) – trims:
0A → +50 A→ -50 A → 0 A 

QE.604 (β = 20m!!) – trims:
0A → +50 A → -50 A → 0 A 

mailto:Ralph.Steinhagen@CERN.ch
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Example: SPS LHC1 Cycle-to-Cycle Stability

In between two coasts...

LHC1

injection
plateau

injection
plateau

LHC1

mailto:Ralph.Steinhagen@CERN.ch
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Further Exploitation Possibilities

System can be further exploited for fast and transparent measurements of 
physics affecting Δβ/β that earlier required significant amount of beam time

Example: vertical off-momentum β-Beat:

– Continuous radial modulation: Δp/p ≈ 1·10-3 @ 1 Hz

– One full measurement data set every second!

– N.B. Step in phase → off-centre horizontal orbit in lattice sextupoles

mailto:Ralph.Steinhagen@CERN.ch
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LHC Continuous Beta-Beat Measurements Setup

Located in RR73, the minimum installation without pulling additional cables 

Pick-ups: BPM.7L7.B1 → BPMWC.6L7.B1 → BPMW.5L7.B1

– phase-advance in between of Δμ≈ 45°

– dual-plane → 6 channels

Present installation using 3dB-Splitters works fine for a few (<6-8) pick-up 
locations but does not scale well (costs) for massive deployment 
(dominated by HF cabling, connector, mechanics, etc...)

– Re-used default BBQ front-ends (not optimised for phase stability)

• Non-issue for relative beta-beat change measurements

• Was/can be cross-calibrated (once) against standard BPMs

primary collimator

mailto:Ralph.Steinhagen@CERN.ch
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LHC Beta-Beat during the Energy Ramp I/III
– Raw BPM-to-BPM phase-advance measurement

Perfectly pre-cycled machine, off-resonance excitation, < μm excitation level

– excellent phase resolution, reduces with energy (N.B. const. kick strength)

mailto:Ralph.Steinhagen@CERN.ch
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LHC Beta-Beat during the Energy Ramp II/III
– Reconstructed Local Beta-Beat

Excellent fill-to-fill reproducibility of about 1% – provided machine underwent a 
standard magnetic pre-cycle and no quenches have occurred.

Complemented also by Rogelio's reproducibility assessment

mailto:Ralph.Steinhagen@CERN.ch
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LHC Beta-Beat during the Energy Ramp III/III
– Evolution during a “less-perfect” Ramp

3/8 main dipole circuits being pre-cycled to 2 kA instead of the default 6 kA. 
Percent-level correction of the transfer function of one of the warm quadrupole 
magnet in the vicinity of the test setup

Still, small compared to required dynamic beta-beat of Δβ/β|
max

< 20%

mailto:Ralph.Steinhagen@CERN.ch
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LHC Beta-Beat during Squeeze

Squeezing from β* = 10 m →   β* = 2 m in all four IPs

Nodes at optics matching points & leakage of squeeze of about 5% in IR7
For the time being considered as small and compatible with present 
collimation requirements for low-intensity beams in the LHC.
N.B. Meas. much noisier due the reduced signal-to-noise ratio during the β*-squeeze of 
only 16 dB (reduced excitation strength at top energy + small bunch intensity)

mailto:Ralph.Steinhagen@CERN.ch


C
on

tin
uo

us
 L

H
C

 B
et

a-
B

ea
t M

ea
su

re
m

en
ts

, R
al

ph
.S

te
in

ha
ge

n@
C

E
R

N
.c

h,
 2

0
11

-0
3-

08

21/21

Conclusions

The aim of the continuous beta-beat measurement studies at the LHC was to
– provide a proof-of-feasibility for the measurement technique, and 
– to assess magnitude and time-scale of the LHC lattice changes. 

Continuous beta-beat measurement system could achieve a 1% resolution
– only limited by the maximum off-resonance excitation power, and
– for excitations being kept below a micro-meter 

→ transparent for nominal LHC operation. 

2010 measurements seem to confirm that fill-to-fill beta-beating is 
reproducible within 1% – provided machine underwent a nominal pre-cycle

Present SPS/LHC installation using 3dB-Splitters works fine for a few pick-up 
locations but does not scale well (costs) for massive deployment (dominated by 

HF cabling, connector, mechanics, etc...)

If there is some interest/requirement: should and needs be specified as part of 
a future BPM system at an early stage, e.g. SPS MOPOS renovation & future 
LHC BPM upgrade

mailto:Ralph.Steinhagen@CERN.ch
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additional supporting slides

mailto:Ralph.Steinhagen@CERN.ch
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Beta-Beat Sources

Beta-Beat Sources

– Quadrupole gradient and Momentum errors

– Feed-down due to off-centre horizontal orbit in lattice sextupoles

–

Requirements: Brüning, Fartoukh, LHC Project Report 501

mailto:Ralph.Steinhagen@CERN.ch
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Compromised Machine Protection via Orbit Bumps

Combined failure: Local orbit bump and collimation efficiency (/kicker failure):

To guarantee two stage cleaning efficiency/machine protection:

– Local:  TCP must be >0.7σ closer than TCS w.r.t. the beam → Orbit FB

– Global: no other object (except TCP) closer to beam than TCS 

→ Orbit bumps may compromise function of machine protection/collimation

→ tackled by LHC Orbit Feedback

MKI

closed orbit

TCP & TCS

5.7σ 6.7σ

IR7 e.g 'bump in arc'

Potentially:
< 6.7σ

primary halo 

IR2

TDI

N
a
 [σ] 

~7.5σ
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Compromised Machine Protection through Beta-Beat

MKI TCP & TCS

IR7IR2

TDI

closed orbit

5.7σ 6.7σ

N
a
 [σ] 

~7.5σ

B) “Secondary” collimator
becomes primary (here: Δβ/β = 1)

A) Potentially
< 6.7σ

triplets

acoll  a triplet⋅ coll
 triplet

⋅ A primary
max

A secondary
max 

1 R. Assmann, “Collimation and Cleaning: Could this limit the LHC Performance?”, Chamonix XII, 2003

~ 0.15 ~ 0.6

Combined failure: beta-beat and collimation efficiency

 
“Collimator gap must be 10 times smaller than available triplet aperture!”1

A) β-Beat reduces required protection: Δβ/β ≈ 20 % → 20% tighter collimator settings

B) β-Beat reduces cleaning performance
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Performance Limitations & Constraints on β*

N.B. C = β
trip

· β*

LHC Orbit Feedback

IR Upgrade

β-beat meas. +
RT-Feedback?
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