Analysis of IR8 aperture measurements

Pascal D. Hermes

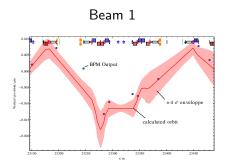
05.02.2013

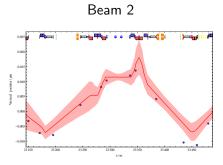
Strategy

Measurement at 450 GeV with hor. crossing bump switched on/off

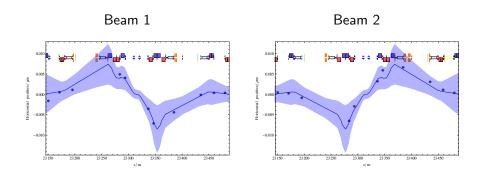
- ▶ Alignment of the TCPs to 4σ
- Increase of separation bump until the beam touches the TCTs protecting the triplet
- Opening of the TCTs
- ▶ Increase of the separation (2 steps) \rightarrow touch the TCTs again
- Repeating until losses are still seen after the TCT opening

Last configuration before the losses were seen

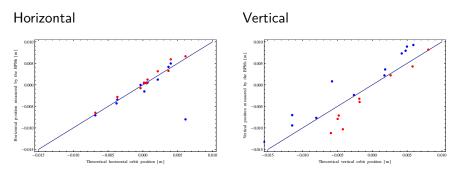

Hor. crossing bump switched on/off


- Use additional bumps by the outer correctors to have independent measurements for B1/B2
- ▶ Largest separation before losses were seen (B1&B2) :

$$\Delta y = \pm 11.5 \, \mathsf{mm} \tag{1}$$


- Compare BPM output with theoretically predicted orbit positions
- ▶ Beam enveloppe with worst case emittance $\epsilon_{\it N}=3.5\,\mu{\rm m}$ rad

Vertical BPM readings at $\pm 11.5\,\mathrm{mm}$


Horizontal BPM readings at $\pm 11.5\,\text{mm}$

Comparison

- ▶ BPM data in agreement with theoretical bump shape for B2 hor/vert
- ▶ Not such a good agreement close to IP8 for B1V
- ▶ Non-linearities of the BPMs make results hard to compare

Comparison of BPM measurements with Theory

- In horizontal direction good agreement
- In vertical direction large spread
- Better approach : Check non-linearity of the BPMs and select 'good' BPMs for analysis : will be done

Aperture at triplet (Theoretical orbit)

- However, BPM and theoretical bump shape are still similar
- ► Approach : Use bump shape at 11.5 mm separation (last step without losses, with and without crossing bump)
- ▶ Largest Y at MCBXV.2R8 : 17.9 mm
- ▶ Different models for beam enveloppe ($\epsilon_N = 3.5 \, \mu \text{m}$ rad)

Aperture at triplet (Theoretical orbit)

θ_{C}	X/Y	$\sigma_{\rm x}/\sigma_{\rm y}$	Vert.	Design		
Angle	at MCBXV.2R8		Aperture	Aperture		
			$(+2\sigma, 3\sigma, 4\sigma)$			
$[\mu rad]$	[mm]	[mm]	[mm]	[mm]		
Left hand side (Beam 1)						
-181	4.09/-17.97	0.7/1.5	20.8/22.3/23.8	24		
0	0/-17.97	0.7/1.5	20.8/22.3/23.8	24		
Right hand side (Beam 2)						
+181	4.09/-17.97	1.5/0.7	20.0/21.5/23.0	24		
±0	0/-17.97	1.5/0.7	20.0/21.5/23.0	24		

Aperture at triplet (Interpolated orbit)

▶ Bump interpolation by using the BPM data (all BPMs) and magnet configuration

θ_{C}	Y	$\sigma_{\rm x}/\sigma_{\rm y}$	Vert.	Design		
Angle	at MCBXV.2L8		Aperture	Aperture		
			$(+2\sigma, 3\sigma, 4\sigma)$			
$[\mu rad]$	[mm]	[mm]	[mm]	[mm]		
Left hand side (Beam 1)						
-181	4.09/18.51	0.7/1.5	21.5/23.0/24.5	24		
0	0/18.51	0.7/1.5	21.5/23.0/24.5	24		
Right hand side (Beam 2)						
-181	4.09/18.80	1.5/0.7	20.2/20.9/21.6	24		
0	0/18.80	1.5/0.7	20.2/20.9/21.6	24		

Summary & Conclusions

- Two approaches for the analysis
- lacktriangle Theoretical bump shape and 4 σ distance to aperture :

$$a_V(\text{left}) = 23.8 \,\text{mm}$$
 $a_V(\text{right}) = 23.0 \,\text{mm}$ (2)

Interpolated bump by BPM readings :

$$a_V(left) = 24.5 \, mm$$
 $a_V(right) = 21.6 \, mm$ (3)

- Second methods suffers from BPM non-linearities
- ► Can increase precision by not using very non-linear BPMs
 → Note