# PSB IMPEDANCES

Michel CHANEL

#### **PSB**

- 4 rings
- 50 MeV to 1.4 GeV ( $\beta$ = 0.31 to 0.92,  $\gamma$ =1.05 to 2.5)
- $\gamma_{tr}$ ~4...psb below transition
- Multiturn injection up to 10<sup>13</sup>/ring accelerated, 1.4 10<sup>13</sup> after injection
- No chromaticity compensation, remains largely negative
- $\varepsilon_1$ =1 to 2.0 eVs(blow-up)
- $\varepsilon_{h,v} = 2.5 \mu m / 210^{12}$  at low N
- N/sqrt( $\varepsilon h \varepsilon v$ )~ $10^{12}/\mu m$
- Strong space charge regime

#### TUNE SHIFTS and SPREADS

Incoherent effects

Tune shift max >0.5

Tune spread 0.5

Coherent effects

tune shifts up to 0.15(v)

tune spreads ~0.05





## Space charge regime (low T)

Vertical coherent tune change by -0.15 with 10<sup>13</sup> particles

This correspond to a vertical space impedance of  $1 \text{ M}\Omega/\text{m}$  or  $Z_{//}/\text{n} \sim 1 \text{k}\Omega$ 





### Damper

#### Damper off

- Only H plane used so far (v nor needed)
- Bandwith used about 13 MHz

 Used since injection at C275 but not needed before C380-430



#### **GENERALITIES**

- the vacuum pipe and its discontinuities were summarized by a broad-band impedance with magnitude,  $|Z_{\parallel}/n| = 20\Omega$  at low frequencies, resonant frequency,  $f_c = 1.3$  GHz and quality factor, Q = 1,
- the fundamental and second-harmonic RF cavities (as detuned by beam loading) were represented by two resonators with estimated values of (damped) Q and shunt resistance,  $R_s$ , of 4 and 400  $\Omega$ , respectively,
- a low-Q resonator with  $f_c = 12.5$  MHz and  $R_s = 30$   $\Omega$  was used to describe the envelope of the rather complicated impedance structure of the ejection kicker plus its open-circuited cables (cf. the transverse impedance plotted in fig. 4).

|                 | Injection |     |          | Mid-cycle |   |        | Flat Top |   |        |
|-----------------|-----------|-----|----------|-----------|---|--------|----------|---|--------|
| BEAM            | T         | m   | τ        | T         | m | $\tau$ | T        | m | $\tau$ |
|                 | [MeV]     |     | [ms]     | [GeV]     |   | [ms]   | [GeV]    |   | [ms]   |
| $ISO^a (h=5)$   | 50        | 3   | 400      | 0.44      | 3 | 41     | 1        | 1 | 10.8   |
| ISO             | 50        | < 4 | $LD_{p}$ | 0.44      | 3 | 130    | 1        | 2 | 176    |
| SFT (p) before  | 50        | < 4 | $LD^b$   | 0.61      | 3 | 250    | 1.4      | 1 | 27     |
| bunch splitting |           |     |          |           |   |        |          |   |        |
| SFT (p) after   |           |     |          |           |   |        | 1.4      | 1 | 37     |
| bunch splitting |           |     |          | 1         |   |        | 1        |   |        |

Table 7: Calculated growth times,  $\tau$ , for single- and/or multi-bunch longitudinal instabilities in the PSB.

#### **Kickers**

The low-loss cables to be installed in 1994 within the framework of the lead ion programme will tend to reduce the above e-folding times and their impact on the stability of the five bunches will have to be studied with a more refined model.

For the h=1 RF system of the LHC era, all head-tail modes up to oscillation mode number,  $m \le 10$  are unconditionally stable, that is, in the absence of any damping and for the pessimistic kicker model. This may be explained by:

- the longer bunches which result in a correspondingly narrower spectrum confined to the harmless positive real part of the impedances,
- the denser spectrum (lines every revolution frequency cancel resistive wall impedances).

Some of the higher modes (checked up to m = 33) appear unstable but can safely be stabilized with the slightly upgraded transverse damper and are, anyway, probably Landau damped.



Figure 5: As fig. 4 but with the HT cable configuration of the LHC era. (Note the factor of twenty change in the vertical scale.)

## Flanges

- The flanges have been renewed when RF was changed to h=1
- The impedance in the h=1 frequency range is about  $17\Omega$  for the whole ring
- http://cern.ch/AccelConf/e00/PA PERS/TUP6B06.pdf





### Others cavities

- Pumping manifolds equipped with manchons to avoid resonant frequency around 1.3 GHz (dilution in longitudinal plane) Rs~ $10k\Omega$ , Rs/Q~ $10\Omega$ (http://cern.ch/AccelConf/pac97/papers/pdf/2V005.PDF)
- Septa equipped with pseudo vacuum chambers which insures walls continuity
- Tanks for screens or Flying wires equipped with damping ferrite blocks

#### REFERENCES

- Landau damping by space charge and octupoles D MOHL CERN/PS 95-08 and subsequent references
- Beams in the PS during the LHC era, CERN/PS 93-08, H Schönauer&all and subsequent references, particularly F.J. Sacherer, Transverse Bunched Beams Instabilities, CERN/PS/BR 76-21
- Different papers on different CAS (A. Hofmann-77, J.L. Laclare-92, J. Gareyte SL 91-9, F. Pedersen PS 93-36, S. Myers SL-97-48.....)
- Book: A.W. Chao, Physics of collective instabilities in high energy accelerators. John Wiley&sons, 1993