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INTRODUCTION (1/3)

+ High-intensity beams : |\ INESERCERY P (0ps p/b

= SFTPRO (and future CNGS)

. n-TOF Goal :4.8x10" p/pulse
= AD

= EASTC = EAST + parasitic n-TOF

+ High-density beams : [NIEqEV IS ke p/b
=0.35eVs
= LHC
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INTRODUCTION (2/3)

Normalised rms

Ultimate LHC beam
*= Done with a remarkable transmission in 2001
" The transverse and longitudinal emittances need to be
optimised (slightly too large : ~ 4 Om in transverse and 4.5 ns
bunch length, instead of 3 and 4)
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INTRODUCTION (3/3)
CNGS O Best global result obtained in 2001 (PS record)

PE. STETE

44001
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35004
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®100 HYH/—
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4 bunches 4
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C Time [ms]
... but a lot of work remain to be done to obtain the desired performance

with acceptable losses O Detailed study of all the bottlenecks
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INJECTION PROCESS (1/5)

¢ Why did one need to have at injection for

N, > ~3-4x10" p/b K&

Otherwise ~ all the bunch was
lost in few turns
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INJECTION PROCESS (2/5)

New set-up NESEE

opdisp
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INJECTION PROCESS (3/5)

XSG vamed
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Cydeﬁ@n£ PX.ELFT-C10

INJECTION PROCESS (4/5)

Xl voPs[7] D3
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INJECTION PROCESS (5/5)

= The improvement seems to come only from the correction of the
Injection coherent oscillations !!!

®= This result will be applied this year on n-ToF, AD and SFTPRO

O The longitudinal emittance blow-up used to avoid the crossing of
the integer or ¥z integer resonances could disappear

Conclusion : The horizontal tune at injection should not be
a problem anymore. To be verified in few weeks...
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LOW-ENERGY FLAT-BOTTOM (1/24)

¢ (1) Horizontal Head-Tail instability due to the resistive-wall
Impedance

~0.33A

1Dcase O [

skew

Beam-Position Monitor

(20 revolutions superimposed)

¢R signal

......

LLLELLLL

Time (20 ns/div)
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LOW-ENERGY FLAT-BOTTOM (2/24)

Normalized

skew

|
5

~0.33A+0.1A
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LOW-ENERGY FLAT-BOTTOM (3/24)

= Chromaticity tuning
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LOW-ENERGY FLAT-BOTTOM (5/24)
= Observations of the beneficial effect of linear coupling Iin other
machines

°* LANL-PSR (from B. Macek)
O ep instability

* BNL-AGS (from T. Roser)
O coupled-bunch instability

* CERN-SPS (from G. Arduini)
O TMC instability in the vertical plane with lepton beams at 16 GeV

* CERN-LEP (from A. Verdier)
O TMC instability in the vertical plane at 20 GeV
" Predicted beneficial effect of linear coupling in other machines

. CERN'SPS_ - Encouraging results (from G. Arduini)
O e cloud instability O To be studied in detail
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LOW-ENERGY FLAT-BOTTOM (6/24)

= n Linear coupling can also have a destabilizing effect

“Destabilizing effect of linear coupling in the HERA proton ring”

with G. Hoffstaetter and F. Willeke from DESY, Hamburg

O Stability criterion AQIZFU\?Sd > ‘ AQ

normal modes

All the measurements performed so far (since 1992) on the
traditionally called Batman (now called coupled head-tail) instability
can be explained by the theory of coupled Landau damping
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LOW-ENERGY FLAT-BOTTOM (7/24) C 250
¢ (2) Montague stop-band

phys,2o
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LOW-ENERGY FLAT-BOTTOM (8/24)
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LOW-ENERGY FLAT-BOTTOM (9/24)

= Intensity dependent emittance-exchange in the KEK Booster

See PAC2001 paper
MEASUREMENTS (Sakai et al.)
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LOW-ENERGY FLAT-BOTTOM (10/24)

SIMULATIONS for the KEK Booster 3D version of the
tracking code

e (217, 2.32) H

e (2 17. 232) ¥ SIMPSONS
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Figure 6: Emittance Exchange
with Three Different Bare tunes
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LOW-ENERGY FLAT-BOTTOM (11/24)

= A benchmarking experiment has been carried out in the PS

O Study the effect of the Montague stop-band
(with I. Hofmann and G. Franchetti from GSI, Darmstadt)

= Single bunch with maximum space-charge horizontal tune shift

Elias Metral, AB seminar, 13/02/2003
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LOW-ENERGY FLAT-BOTTOM (12/24)

Intensity dependent emittance sharing in the PS

¢ Emit H (norm, 2 rms)

= Emit_V (norm, 2 rms)
~4 Theoretical Emit_H
-#- Theoretical Emit_V

6.19 6.21 6.23
Horizontal tune Qh

New formulae

Theoretical coupling strength = Half stop-band (f = 5%) ‘ C ‘ =0.042
f describes the allowed amount of emittance transfer
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LOW-ENERGY FLAT-BOTTOM (13/24)

= New formulae

Symmetrical
stop-band
predicted (for
the coherent

tunes) 2
A=2Q,-20Q, :2Qy_2QX_3KscR—(aO_bo)
2Q, 3, b, (8, + b, )
1-2f|

4, f(1-1)

5half stopband ‘ Qv - Qh ‘SC coupling ‘ C ‘X

1
Time scale [INK

turns
~[C]
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LOW-ENERGY FLAT-BOTTOM (14/24)

®= These formulae have the same form as the ones already derived
for emittance sharing and exchange by linear betatron coupling

with different meanings for m and

* (Classical formulae

O Sharing only

* New formulae O Sharing + Exchange
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LOW-ENERGY FLAT-BOTTOM (15/24)

Physical emittances at 2¢ [Om]

HTheo&Exp

VTheo&Exp

C Time [ms]
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LOW-ENERGY FLAT-BOTTOM (16/24)

Possible applications of emittance exchange by linear betatron coupling

Precise measurement of the horizontal emittance in the vertical
plane (where D, = 0) O Cf. C. Carli and G. Cyvoct in the Booster

| _ The first who
SEWEUMERUERTIIEREMJERINEY o ticinated this mechanism

Reduction of the horizontal emittance for the high-intensity beams
sent to the SPS, where the limitation is the vertical acceptance

In theory cooling is needed only in one plane (as the damping of
certain instabilities)

Coupling measurement O To see if there is coupling or not. There
IS no coupling in the PS at 14 GeV/c, but there is coupling at
26 GeV/c
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LOW-ENERGY FLAT-BOTTOM (17/24)
¢ (3) Crossing of the 1 or %2 int. resonances : benchmarking experiment

No particle here O Particles
If longitudinal motion added
(see Martini formula :
tri-Gaussian in x, y and p)

From Keil formula
bi-Gaussian in x and y
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LOW-ENERGY FLAT-BOTTOM (18/24)

Case 3 : Horizontal distributions
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LOW-ENERGY FLAT-BOTTOM (19/24)

Case 3 : Horizontal initial and final distributions + Gaussian fit

O Core-emittance blow-up
(Distribution conserved)
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LOW-ENERGY FLAT-BOTTOM (20/24)
Flat bunches
O No measurable improvement, but...

®= The increase of the bunching factor was less significant

than during the 2001 run (20-30% increase in 2001, ~10%
in 2002)

" The bunching factor was already very good with the
longitudinal blow-up

O To bere-done
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LOW-ENERGY FLAT-BOTTOM (21/24)

¢ (4) Diffusive phenomena due to resonance crossing : benchmarking
experiment O Study the effect of space-charge forces on a resonance
driven by a single octupole (with I. Hofmann and G. Franchetti)

Qv Regime of loss-free
core-emittance blow-up

Elias Metral, AB seminar, 13/02/2003

Regime where continuous
loss occurs O Due to
longitudinal motion

Particles diffuse
into a halo
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LOW-ENERGY FLAT-BOTTOM (22/24)
THEORETICAL PREDICTIONS
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LOW-ENERGY FLAT-BOTTOM (23/24)

MEASUREMENTS

This may be the mechanism of the observed loss, where the
reduced dynamic aperture close to the resonance extracts the halo
particles O To be analysed in detail
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LOW-ENERGY FLAT-BOTTOM (24/24)

Linear coupling and future

Conclusion : Damper&Feedback

®" The Head-Tail instability is not a problem
= Emittance transfer by space-charge or betatron coupling
= Crossing of the integer or Y%2-integer resonances
= Diffusive phenomena due to resonance crossing

O To be analysed in detail and continued
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TRANSITION CROSSING (1/6)

¢ (1) Vertical Mode-Coupling instability due to a Broad-Band
impedance above ~4®10%2 p/b if no controlled longitudinal blow-up

WB PU in S98

AV signals
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TRANSITION CROSSING (2/6)

¢ (2) Ghost bunches and blow-up losses

* Longitudinal blow-up in both PSB and PS machines for 2 reasons
* Incoherent space-charge tune shift at PS injection
* Fast single-bunch vertical instability near transition

Dueto Q,® 6.1 at
jection

= Empty buckets can become populated by ghost bunches
* Easiest solution : Adjust the ejection kicker length
* Cleanest solution : Do not create these ghosts

Ghost particles can easily amount

to ~5&10* protons per cycle, with much of
this lost near transition
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TRANSITION CROSSING (3/6)

Initial situation : The operational n-ToF beam on June 27, 2002

~12®10%° protons lost in the
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TRANSITION CROSSING (4/6)

Final situation

~0.7%10% protons lost in the P
c c ) T e e T ]
after ejection o ov_opon_cone
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TRANSITION CROSSING (5/6)

&

Beam stability near transition obtained above a certain value of
iIndependently of the shape of the density profile of the bunch

Result in agreement with predictions

Very reproducible and sensitive

The required emittance can be obtained by several sets of blow-up
parameters O May produce ghost bunches

An optimal set has been found which practically eliminates the ghosts
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TRANSITION CROSSING (6/6)

Conclusion :

" Fine-tuning of several equipments required, which suppresses
almost all the beam losses

= 2types of losses may be observed near transition
* Fast beam losses (due to a vertical coherent instability)
O Avoided by adjusting (without creating ghosts...)
* Slow beam losses (due to the working point)

O Suppressed thanks to a new program, which allows
precise tunings of the working point and chromaticities

S. Baird and B. Vandorpe

*= New PSrecord : ~8.2¢10' p/b through transition with ~ no loss
= Main problem in the future : Reproducibility of the fine-tuning

* Finally, transition crossing with the nominal CNGS high-intensity
multi-bunch beam remains to be carefully studied
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HIGH-ENERGY FLAT-TOP(1/15)

¢ (1) Longitudinal microwave instabilities have been observed during
the de-bunching procedure of the 1st version LHC beam

O Long. Schottky
scan spectogram :

(200 ms total)

* Microwave instabilities may be observed during the de-bunching
procedure (if any?) for CNGS

¢ (2) Transverse e cloud cloud phenomena have been observed both in
the PS machine and in the TT2 transfer line towards the SPS with the

nominal LHC beam
Elias Metral, AB seminar, 13/02/2003 41



HIGH-ENERGY FLAT-TOP(2/15)

Emittance measurement problems with SEMwires

Emittance measurements using the SEMwires in TT2
WITHOUT bunch rotation
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HIGH-ENERGY FLAT-TOP(3/15)

Emittance measurements using the SEMwires in TT2

WITH bunch rotation
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HIGH-ENERGY FLAT-TOP(4/15)
= Baseline drifts in electrostatic pick-ups

Nominal beam seen on a pick-up in TT2

Time scale:
200 ns/div

PU located in a
field-free region.
Bandwidth :
0.006-400 MHz

HH

Elias Metral, AB seminar, 13/02/2003 44



HIGH-ENERGY FLAT-TOP(5/15)

Nominal beam seen on a pick-up in PS

Bunch train : 1.8

i
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Bandwidth : 0.2-30 MHz
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HIGH-ENERGY FLAT-TOP(6/15)

= Effect of a solenoidal field

the 25 cm long PU device)
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HIGH-ENERGY FLAT-TOP(7/15)

Solenoid around the pick-up in TT2
w7 A
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HIGH-ENERGY FLAT-TOP(8/15)

ol = SO NG RCETERIRGIER VIR Nominal beam on a pick-up in TT2

Gap : 320 ns

a7 PR ORI § PSP SRR e e R A

| . By ; ]
1 5@33&"«?&%}%}-\}”;;;‘;%“ YA Y
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HIGH-ENERGY FLAT-TOP(9/15)

Nominal beam on a pick-up in TT2

6 Gaps : 120 ns each

S N
1 1) o
s a hk_;'hu’.,
T - TX
-+ e T
Y WYY ALY FOW STV m: '
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HIGH-ENERGY FLAT-TOP(10/15)

Conclusion : Electron cloud effects on the nominal PS beam for LHC
= Generate only beam diagnostics problems
®= No time to develop an instability

Benchmarking experiment

¢ Electron cloud effects on a modified PS beam for LHC

*= Beam used : nominal one, but kept with a bunch length of ~10 ns
during ~100 ms before extraction

®= The electron cloud build-up is observed
* The beam is unstable

* Single-bunch radial instability
* Rise-times of few ms (several synchrotron periods)

* No beam loss
* Beam size blow-up : © ~10-20inHand ~2in V
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HIGH-ENERGY FLAT-TOP(11/15)

Spectrum Analyzer
(zero frequency span)

[ Center 357 krz | 10 corai |
: e

10° p/b

| Spectrum Analyzer
' (0 © 10 MH2)

N, ~5.5x10% p/b
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HIGH-ENERGY FLAT-TOP(12/15)
B 1T T | |

H]'T‘”f'rﬂ’"?'.

p/b

N, ~8.3x10" p/b
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HIGH-ENERGY FLAT-TOP(13/15)

Time scale : 500 ns/div
t | .

TN Y T e

iy
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HIGH-ENERGY FLAT-TOP(14/15)

Chromaticity @O No effect

Octupoles O Some improvements with very high current
values (>200 A)

Horizontal instability observed in the PS, whereas it is a
vertical one in the SPS

* In the PS : 70% of combined function magnets and 30%
of field-free region

* In the SPS : 2/3 of dipole-field region and 1/3 of field-
free region

The simulations (with ECLOUD and HEADTAIL codes) indicate
that a significant horizontal wake-field may exist in a
combined function magnet, in contrast to the case of a pure
dipole field, where the horizontal wake is close to zero.
However, simulations predict a vertical instability with a
stabilizing effect of chromaticity. To be continued...

Study with G. Rumolo and F. Zimmermann
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HIGH-ENERGY FLAT-TOP(15/15)

Using the horizontal wake-field computed by simulation in the PS
combined function magnet

o . Classical value
Head-Tail instability 1o e BE alme

transition

1
x & £ £ =0.1-0.2

N, = 4x10" p/b

0.4 0.6 0.8
O It could explain the instability in the horizontal plane, the head-

tail regime, and the non-stabilizing effect of the chromaticity. To be

continued...
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CONCLUSION : Main problems remaining

¢ Low-energy flat-bottom

= Several studies to be analysed in detail and continued to
find the best working point

¢ Transition crossing

= Reproducibility of the fine-tuning of several equipments
¢ High-energy flat-top

" New CT

See AB seminar “Multiturn extraction using

adiabatic capture” by M. Giovannozzi on 13/03/2003

* Longitudinal microwave instabilities may be observed
during the de-bunching procedure (if any?) for CNGS

¢ Multi-bunch effects
= Bothin the transverse and longitudinal planes
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