HEADTAIL upgrade

new features & options

D. Quatraro, G. Rumolo, B. Salvant thanks to R. Tomás, E. Métral

25 August 2008

< 🗆 🕨

÷,

990

ъ.

D. Quatraro, G. Rumolo, B. Salvant thanks to R. Tomás, E. Métral HEADTAIL upgrade

Outline

1 Linear optics model

- 2 Features
- 3 Program structure
- 4 Wake field interaction
- 5 Results for the SPS
- 6 Latest result for TMCI
- 7 Conclusion & perspectives

The model

Linear transport through the direct MAD-X output by means of matrices

The model

Linear transport through the direct MAD-X output by means of matrices

< < > < < > >

- - E

▶ < ≣ ▶

The model

Linear transport through the direct MAD-X output by means of matrices

Reading the TWISS parameters ψ, β, α and the positions *s* of the elements and building up the matrices for the different points

The model

Linear transport through the direct MAD-X output by means of matrices

Reading the TWISS parameters ψ, β, α and the positions *s* of the elements and building up the matrices for the different points

$$\mathcal{M}_{j}=\mathcal{M}\left(\textit{s}_{j+1}|\textit{s}_{j}
ight)$$

ъ.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Momentum offset $p = p_0 + \Delta p$, $\delta = \Delta p / p_0$

Momentum offset
$$p = p_0 + \Delta p$$
, $\delta = \Delta p/p_0 \Rightarrow \begin{cases} \beta_j \rightarrow \beta_j + \hat{\beta}_j \delta \\ \alpha_j \rightarrow \alpha_j + \hat{\alpha}_j \delta \\ \psi_j \rightarrow \psi_j + \xi_j \delta \end{cases}$

$$\Delta \psi_{j+1,j} = \delta \, \xi_{j+1,j} \qquad \xi_{j+1,j} = \frac{1}{4\pi} \int_{s_j}^{s_{j+1}} \, ds \, \left[k(s) - m(s) D(s) \right] \beta(s)$$

E

イロト イワト イヨト イヨト

Momentum offset
$$p = p_0 + \Delta p$$
, $\delta = \Delta p/p_0 \Rightarrow \begin{cases} \beta_j \rightarrow \beta_j + \hat{\beta}_j \delta \\ \alpha_j \rightarrow \alpha_j + \hat{\alpha}_j \delta \\ \psi_j \rightarrow \psi_j + \xi_j \delta \end{cases}$

$$\Delta \psi_{j+1,j} = \delta \, \xi_{j+1,j} \qquad \xi_{j+1,j} = \frac{1}{4\pi} \int_{s_j}^{s_{j+1}} \, ds \, \left[k(s) - m(s) D(s) \right] \beta(s)$$

5990

≣

<ロ><()</p>

From MAD-X we get ($d/d\delta$) $\psi_{j+1,j}=\xi_{j+1,j}$

$$\text{Momentum offset } p = p_0 + \Delta p, \ \delta = \Delta p/p_0 \quad \Rightarrow \quad \begin{cases} \beta_j \to \beta_j + \hat{\beta}_j \delta \\ \alpha_j \to \alpha_j + \hat{\alpha}_j \delta \\ \psi_j \to \psi_j + \xi_j \delta \end{cases}$$

$$\Delta \psi_{j+1,j} = \delta \, \xi_{j+1,j} \qquad \xi_{j+1,j} = \frac{1}{4\pi} \int_{s_j}^{s_{j+1}} \, ds \, \left[k(s) - m(s) D(s) \right] \beta(s)$$

From MAD-X we get $(d/d\delta) \psi_{j+1,j} = \xi_{j+1,j}$

For the transport

$$\mathcal{M}_{j}^{Chr} = \mathbf{T}_{j+1} \mathbf{R}\left(\psi_{j}\right) \mathbf{R}\left(\Delta \psi_{j+1,j}\right) \mathbf{T}_{j}^{-1} = \mathcal{M}\left(s_{j+1}|s_{j}\right) \cdot \mathcal{M}\left(s_{j}|s_{j}; \Delta \psi_{j+1,j}\right)$$

< D > < B > <</p>

990

э

- ∢ ⊒ →

Outline

1 Linear optics model

2 Features

- 3 Program structure
- 4 Wake field interaction
- 5 Results for the SPS
- 6 Latest result for TMCI
- 7 Conclusion & perspectives

Choice of the interaction and observation points 1/3

Three kind of interactions are taken in account

i) Space charge: present everywhere in the machine

< 🗆 🕨

500

Choice of the interaction and observation points 1/3

Three kind of interactions are taken in account

- i) Space charge: present everywhere in the machine
- ii) Wake field:
 - broad band
 - resistive wall
 - associated with a certain component

< 🗆 🕨

500

Choice of the interaction and observation points 1/3

Three kind of interactions are taken in account

- i) Space charge: present everywhere in the machine
- ii) Wake field:
 - broad band
 - resistive wall
 - associated with a certain component
- iii) Electron cloud: localized one

Choice of the interaction and observation points 1/3

Three kind of interactions are taken in account

- i) Space charge: present everywhere in the machine
- ii) Wake field:
 - broad band
 - resistive wall
 - associated with a certain component
- iii) Electron cloud: localized one

How to select these interaction points?

< 🗆 🕨

500

Choice of the interaction and observation points 1/3

Three kind of interactions are taken in account

- i) Space charge: present everywhere in the machine
- ii) Wake field:
 - broad band
 - resistive wall
 - associated with a certain component
- iii) Electron cloud: localized one

How to select these interaction points?

• three options

Choice of the interaction and observation points 1/3

Three kind of interactions are taken in account

- i) Space charge: present everywhere in the machine
- ii) Wake field:
 - broad band
 - resistive wall
 - associated with a certain component
- iii) Electron cloud: localized one

How to select these interaction points?

- three options
- by means of the elements name or their family name

< 🗆 🕨

Choice of the interaction and observation points 1/3

Three kind of interactions are taken in account

- i) Space charge: present everywhere in the machine
- ii) Wake field:
 - broad band
 - resistive wall
 - associated with a certain component
- iii) Electron cloud: localized one

How to select these interaction points?

- three options
- by means of the elements name or their family name
- by means of the elements name or their family name

Choice of the interaction and observation points: space charge 2/3

Space charge forces depend on the transversal size of the beam $\sigma_{x, y} \simeq \sqrt{\epsilon_{x, y} \beta_{x, y}}$ E. g. SPS' lattice example

 $\beta_{x,y}$ sampled through $[\beta_{Inf.}, \beta_{Sup.}]$ (left) \rightarrow we can take in account any size of the beam

< 🗆 🕨

Choice of the interaction and observation points: space charge 2/3

Space charge forces depend on the transversal size of the beam $\sigma_{x, y} \simeq \sqrt{\epsilon_{x, y} \beta_{x, y}}$ E. g. SPS' lattice example

 $\beta_{x,y}$ sampled through $[\beta_{Inf.}, \beta_{Sup.}]$ (left) \rightarrow we can take in account any size of the beam

 β randomly distributed over the ring (right) \rightarrow using different seeds we can do some statistical studies $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle \equiv \langle \Box \rangle$

Sac

D. Quatraro, G. Rumolo, B. Salvant thanks to R. Tomás, E. Métral HEADTAIL upgrade

Choice of the interaction and observation points: HDTL syntax 3/3

Three keywords:

< <p>Image: Image: Imag

P

200

-

Choice of the interaction and observation points: HDTL syntax 3/3

Three keywords:

ec electron cloud interaction points

< 🗆 🕨

MQC2

Choice of the interaction and observation points: HDTL syntax 3/3

Three keywords:

ec electron cloud interaction points

wf wake field interaction points

< 🗆 🕨

500

Choice of the interaction and observation points: HDTL syntax 3/3

Three keywords:

- ec electron cloud interaction points
- wf wake field interaction points
- ob observation points (BPMs)

Choice of the interaction and observation points: HDTL syntax 3/3

Three keywords:

- ec electron cloud interaction points
- wf wake field interaction points
- ob observation points (BPMs)

Example for the SPS

< <p>Image: Image: Imag

JAC.

Choice of the interaction and observation points: HDTL syntax 3/3

Three keywords:

- ec electron cloud interaction points
- wf wake field interaction points
- ob observation points (BPMs)

Example for the SPS

< 🗆 🕨

JAC.

The string BMM means each element of that family.

Outline of the command from shell

Outline	of	the	command	from	shell

argv	option	type	description	comment	
1	-	*char	MAD-X input file with lattice structure	contains all the MAD-X instructions	
2	0	int	sampling through all $-\beta_x$ range of variation		
	1	int	sampling through all eta_y range of variation	-	
	2	int	random choice of both $eta_{\mathbf{x}}$ and $eta_{\mathbf{y}}$	-	
_	3	int	no space charge force	-	
3	-	int	numbers of elements for the space charge force	compulsory if $argv2=0, 1, 2$	
>4	-	*char	elements' name for ec wf and ob points	you can even use one of the three	

Outline

- 1 Linear optics model
- 2 Features
- 3 Program structure
- 4 Wake field interaction
- 5 Results for the SPS
- 6 Latest result for TMCI
- 7 Conclusion & perspectives

<u>Needed files</u> and how does hdtl work...1/2

- .cfg*: contains all the information concerning the bunch as well as some of the physical parameters
- .dax*: contains the MAD-X instructions to get all the information about the machine
- match_htdl.cmdx*: contains the MAD-X instructions to match both the tunes and the chromaticities whose values are in the .cfg file
- selectedlattice.txt: contains the used lattice with the twiss parameters
- ELEMENT_NAMES.txt: contains all the elements used in the simulation and a flag to distinguish between them

<u>Needed files</u> and how does hdtl work...1/2

- .cfg*: contains all the information concerning the bunch as well as some of the physical parameters
- .dax*: contains the MAD-X instructions to get all the information about the machine
- match_htdl.cmdx*: contains the MAD-X instructions to match both the tunes and the chromaticities whose values are in the .cfg file
- selectedlattice.txt: contains the used lattice with the twiss parameters

- ELEMENT_NAMES.txt: contains all the elements used in the simulation and a flag to distinguish between them
- in red are those files whose name must not change
- * are those files hdtl needs to work

launch hdtl with the right syntax

launch hdtl with the right syntax

HEADTAIL upgrade

hdtl runs MAD-X to produce the lattice structure

< <p>Image: Image: Imag

άų.

990

ъ.

- launch hdtl with the right syntax
- hdtl runs MAD-X to produce the lattice structure

 $\label{eq:linear} \begin{matrix} \psi \\ \text{the file lattice.txt is written} \end{matrix}$

< 🗆 🕨

MQC2

- launch hdtl with the right syntax
- hdtl runs MAD-X to produce the lattice structure

< 🗆 🕨

500

hdtl runs Gettwiss to recognize the lattice structure and to build up the transfer matrices

- launch hdtl with the right syntax
- hdtl runs MAD-X to produce the lattice structure

hdtl runs Gettwiss to recognize the lattice structure and to build up the transfer matrices

∜

the files selectedlattice.txt and ELEMENT_NAMES.txt are written

< 🗆 🕨

Outline

- 1 Linear optics model
- 2 Features
- 3 Program structure
- 4 Wake field interaction
- 5 Results for the SPS
- 6 Latest result for TMCI
- 7 Conclusion & perspectives

New way to get the wake fields..

The model

hdtl takes the fields from ZBASE \rightarrow wake field kick

New way to get the wake fields..

The model

hdtl takes the fields from ZBASE $\rightarrow\,$ wake field kick

$$p_j(\Delta t) = p_j(0) + f_j(q_j) \cdot \Delta t \qquad j = x, y$$

with

$$\int_{\mathsf{s}_j}^{\mathsf{s}_j+\Delta \mathsf{s}} d\mathsf{s} \ \mathit{f}_j(q_j) = \kappa \left(W_j^{Dip.} \hat{q}_j + W_j^{Quad.} q_j
ight)$$

< <p>Image: Image: Imag

ъ.

500

being \hat{q}_j the coherent motion spatial coordinate

New way to get the wake fields..

The model

hdtl takes the fields from ZBASE \rightarrow wake field kick

$$p_j(\Delta t) = p_j(0) + f_j(q_j) \cdot \Delta t \qquad j = x, y$$

with

$$\int_{s_j}^{s_j+\Delta s} ds\, f_j(q_j) = \kappa \left(W_j^{Dip.} \hat{q}_j + W_j^{Quad.} q_j
ight)$$

being \hat{q}_j the coherent motion spatial coordinate

...getting the fields

 $W_j^{Dip.}$ and $W_j^{Quad.}$ fields for *every* device (source of impedance) directly taken from ZBASE

Link between MAD-X and ZBASE

< u > < 🗗

5990

ъ.

Link between MAD-X and ZBASE

Outline

- 1 Linear optics model
- 2 Features
- 3 Program structure
- 4 Wake field interaction
- 5 Results for the SPS
- 6 Latest result for TMCI
- 7 Conclusion & perspectives

Impedance sources localization

Centroid motion at BP(M/V/H) selected by means of the names

Impedance sources localization

Centroid motion at BP(M/V/H) selected by means of the names Used to localise the impedance sources...from 1000-turns data

Impedance sources localization

Centroid motion at BP(M/V/H) selected by means of the names Used to localise the impedance sources...from 1000-turns data

pictures from Rama's talk: SPS Impedance Meeting, May 30th, 2008

Outline

- 1 Linear optics model
- 2 Features
- 3 Program structure
- 4 Wake field interaction
- 5 Results for the SPS
- 6 Latest result for TMCI
- 7 Conclusion & perspectives

Growth rates

We have simulated the interaction of the bunch with the kickers' impedances

Growth rates

We have simulated the interaction of the bunch with the kickers' impedances

Mode coupling 1/2

Analysis of the tune vs. bunch intensity

Mode coupling 1/2

Analysis of the tune vs. bunch intensity

left(horizontal plane) & right(vertical plane)

5990

D. Quatraro, G. Rumolo, B. Salvant thanks to R. Tomás, E. Métral HEADTAIL upgrade

Mode coupling 2/2

Comparison between the one kick and the new model

< 口 > < 合型

5990

left(horizontal plane) & right(vertical plane)

D. Quatraro, G. Rumolo, B. Salvant thanks to R. Tomás, E. Métral HEADTAIL upgrade

Outline

- 1 Linear optics model
- 2 Features
- 3 Program structure
- 4 Wake field interaction
- 5 Results for the SPS
- 6 Latest result for TMCI
- 7 Conclusion & perspectives

- hdtl has been successfully interfaced with MAD-X for the linear transport
- hdtl has been successfully interfaced with ZBASE to get the dipolar and quadrupolar components of the wake fields for each element
- SPS kickers impedances: benchmark between the one-kick approximation (using β-weighed fields) and the new code with multiple kicks at their actual locations shows an excellent agreement
- hdtl can do realistic simulations for a single bunch through an arbitrary sequence of known impedances
- any suggestion, idea, help...would be most welcome...debugging is still ongoing