

PS Upgrade plans, issues and status

S. Gilardoni BE-ABP

LHC50ns Production Scheme & Issues

Single batch injection from PSB (3 x 2 bunches, 6 bunches for PS at h=7) Transverse emittance produced in the PSB, longitudinal in the PS

RF gymnastics in PSB:

- ➡ RF capture
- ➡ Splitting
- Bunch distance adjustment

RF gymnastics in PS:

- ➡ Triple splitting
- Acceleration
- Double splitting
- ➡ Re-bucketing
- Bunch rotation

SPS acceleration

- ➡ 3 RF systems in PSB
- ➡ 5 RF systems in PS
- ⇒ 2 RF systems in SPS

 \rightarrow Each bunch from the Booster divided by $6 \rightarrow 6 \times 3 \times 2 = 36$

One splitting less compared to 25ns beam requires acceleration and splitting of long. small and dense bunches

Beam quality (assuming perfect SPS)

Nominal conditions → @ PS extraction: +/- 10% intensity spread along the batch

 \rightarrow average bunch length about 4 ns within 0.35 eVs, 1.3E11 ppb within 3 µmrad (1 σ norm)

➔ first bunch always different as first third of batch since affected by transient beam loading

→ satellite bunches ~1% (cannot measure less in the PS), observed to be less than 1% in LHC

ad	Due to slow drift or wrong adjustment (solvable)	Due to beam intensity (difficult to avoid)
f spre	Relative phase settings between RF harmonics	Shot-to-shot variations in PSB, also ring-to-ring
rces o	Badly adjusted beam transfer PS-SPS	Transient beam loading \rightarrow rel. RF phase diff. along batch
Sour	Big intensity differences of PSB rings or number of rings	Coupled-bunch instabilities

Goal: increase performance of the LHC

Brightness:

- -Increase injection energy in the PSB from 50 to 160 MeV, Linac4 (160 MeV H-)
- -Increase injection energy in the PS from 1.4 to 2 GeV
- Upgrade the PSB, PS and SPS to make them capable to accelerate and manipulate a higher brightness beam (feedbacks, cures against electron clouds, hardware modifications to reduce impedance...)

Increase reliability and lifetime (until ~2030!): tightly linked with consolidation

- -Upgrade/replace ageing equipment (power supplies, magnets, RF...)
- -Procure spares
- Improve radio-protection measures (shielding, ventilation...)

PS - LIU Budget as included in the 2011 MTP

							LS	1			LS	2	
		BC	Group	WBS	2011	2012	2013	2014	2015	2016	2017	2018	Total kCHF
PS	Management (M resources)	61030	BE-ABP	LIU-PS 1	40	80	80	80	80	80	80	40	560
	Beam Dynamics	61031	BE-ABP	LIU-PS 2		10	10	10	10	10	10	10	70
	Magnets	99282	TE-MSC	LIU-PS 3			670	330					1000
	RF	69030	BE-RF	LIU-PS 4	110	305	1230	1330	3500	3500	3200		13175
	EPC	99263	TE-EPC	LIU-PS 5	70	140	1110	580	70	210	180		2360
	Beam instrumentation	64030	BE-BI	LIU-PS 6									0
	Intercepting device		EN-STI	LIU-PS 7		100							100
	Vacuum system	99272	TE-VSC	LIU-PS 8	25	125					3850		4000
	Injection	99253	TE-ABT	LIU-PS 9		135	300	820	780	560	90		2685
	Controls		BE-CO	LIU-PS 11			25						25
	Electrical system		EN-EL	LIU-PS 12									0
	Cooling and ventilation		EN-CV	LIU-PS 13									0
	Transport		EN-HE	LIU-PS 14							880		880
	Civil engineering	76800	GS-SE	LIU-PS 15	30		700						730
	RP	57393	DGS-RP	LIU-PS 16		225	225						450
	Machine Interlocks		TE-MPE	LIU-PS 17									0
	Alarms			LIU-PS 18									0
	Access doors			LIU-PS 19									0
	Survey		BE-ABP	LIU-PS 20							90		90
	OP	67030	BE-OP	LIU-PS 21	140								140
	PS Total				415	1120	4350	3150	4440	4360	8380	50	26265

Plus consolidation work that should be of the order of about 43 MCHF

Injection, magnets, power converters

System	Elements
Injection elements	Injection septum Injection bumpers Eventual extra kicker
Low energy correctors	100 horizontal correctors 30 vertical correctors
Low energy skew quadrupoles	45 magnets
Low energy quadrupoles	40 magnets
Transverse damper	Power part of existing system
e-cloud attenuation system	Chamber coating or electrode Installation
Instrumentation	BWS, BCT, Orbit system, profile monitors.
Improved shielding on top of route Goward and on top of SMH16	Shielding elements

RF

Priority	Item	When
[1]	New coupled-bunch FB	2012
2	Dedicated kicker cavity	2015-2020
10 MHz		
[1]	1-turn delay FB	2011
1	Renovate FB amplifiers	2011-2015 (?)
1	Slow phase loops around each cavity	2013-2014
2	New power amplifier (1 tube/gap)	2014-2018 (?)
20 MHz		
1	1-turn delay FB	2012
2	Slow phase loops around each cavity	2012
40 MHz		
[1]	Automatic tuning system	2011
1	1-turn delay FB	2012
2	New feedback amplifier in grooves	2014
2	Slow phase loops around each cavity	2012
3	Study more voltage per cavity	2013
3	New power supplies	2014-
80 MHz		
1	1-turn delay FB	2012
1	Automatic tuning system - PLC, prot./ions switching	2011-2012
2	Slow phase loops around each cavity	2012
2	New feedback amplifier in grooves	2014
2	Fast ferrite tuner	2016
3	Study more voltage per cavity	2013
3	New power supplies	2014-
3	Extra 80 MHz cavity	???
		6 CLAIN

Caveat for beam characteristics prediction...

Beam parameters are given at injection in LHC: beam loss and blow-up inside the LHC are not accounted for.

- All necessary improvements are implemented in the injectors (Linac4, PSB to PS transfer at 2 GeV, coupled bunch instabilities suppressed, e-cloud suppressed, hardware upgraded...)
- Estimated beam degradation in the accelerator chain (based on observations in 2010):
 - ✓ PS: 5 % beam loss, 5 % transverse blow-up
 - ✓ SPS: 10 % beam loss, 5 % transverse blow-up.

RF gymnastics being kept, imperfections are unchanged:

- \checkmark +-10 % fluctuation of all bunch parameters within a given PS bunch train.
- Traces of ghost/satellite bunches.

Beam parameters: Comments

LIS meeting 20/06/2011

8

Beam parameters at LHC injection [50 ns]

LIS meeting 20/06/2011

9

Beam parameters at LHC injection [25 ns]

Available options:

- (a) Increase PSB extraction energy to 2 GeV
- (b) Build new RCS at 10 Hz (report for end of June, news in September)

Impact on PS injection design:

- Option (a)
 - -same geometry of the injection as today
 - -BT-BTP ppm (new magnets, new power converters)
 - -new septum
 - -extra kicker to inject high intensity beam
- Option (b)
 - -same injection point as today
 - -new septum (new technology, never built for such high energy and large aperture)

RCS pulsing at 10 Hz beams with same characteristics as from PSB at 2 GeV

Energy range	160 MeV to 2 GeV
Circumference	(200x 4/21) π m ≈ 119.68 m
Repetition rate	~10 Hz
RF voltage	60 kV
Harmonics	h = 1 + 2 (in option: 4)
Frequency range	1.3 MHz (h=1 at injection) to 9.5 MHz (h=4 at ejection)
Beam parameters for LHC (for lower <u>emittances</u> scale down intensity accordingly)	Intensity: up to 12×2.7 10 ¹¹ protons/cycle (3.25 10 ¹² p/p) Transv. emittance: $\epsilon^*_{rms} \approx 2.5 \ \mu m$ Long. emittance: $\epsilon_i < 12 \times 0.27 \ eVs$ (determined by acceptance for most cases)
Lattice	3-fold symmetry 21 cells, 5 cells/arc, 2 cells/straight section
Tunes	3.5 < Q _{H,V} < 4.5
Length of straight section (4x)	2 x 2.35 m
Relativistic gamma at transition	~4
Maximum magnetic field	< 1.3 T

12 CERN

Injection to be re-designed (common to PSB or RCS)

- -No margin left for the existing septum
- -Kicker strength not enough to inject non-LHC-type beams at 2 GeV, second kicker in SS53

Injection point

- -not changed wrt to today to minimise intervention and reshuffling of the elements in the tunnel
- -Route Goward shielding must be increased

Injection design done to minimize continuous losses

-Assumption on the injection: physical emittance the same as today.

PSB injection: new septum design

Vertical septum aperture on the injection line side limited to 48 mm

Re-use existing kicker and the new one proposed for the PSB injection

Horizontal trajectories in [mm] at PS 42 injection

Route Goward shielding

LIS meeting 20/06/2011

00001

수수 🕂 🕆 🧖 🐹																											
GANTT project	April 201												July 2011				August 2011			_	Sep	temb	er 2011		Octo	ber 201	1
Name	Priority	14	15	16 1	17	8 1	9 20	21	22	23	24	25	26	27	28 2	29 3	i0 3	1 3	2 33	34	35 3	6	37 38	39	40	41	42 ·
🖻 Beam Dynamics (Transverse) MDs	Beam Dynamics (Transverse) MDs													-	-	- 1	-	- 10			_	_		_		-	-
Working point optimisation	•	_			-	_									_												
Control Chromaticity at 2 GeV	•														_												
Headtail at 2 GeV	•																										
Space Charge at 2 GeV	•										_		_							_	_				_	_	
Electron cloud studies	•																										
Optics model (beta beating)	•																									_	
Impedance localisation via optics measurements	•																										
Optics measurement injection line	•																[_						
FT extraction at higher energy	•																										
Matching mesurements (turn-by-turn)	•																										
Transverse damper commissioning	۲																										
Beam Dynamics (Longitudinal MDs)	•			-	-	-	_			_	-		-	-	-	-	_										
h = 7 acceleration	•			Ξ,	1						_		_														
Verification of triple splitting at 2 GeV	•			6																							
Use of all 80 MHz for final phase rotation (Joined MD with SPS)	•																										
Study of kick voltage applied by C86/96 via CB-feedback	•	~																									
General performance	•			-		-	_		-	_	-		-	-	-	-	-	-	_		_	_	_	_	-	_	_
50 ns double batch beam	•		_	-		- 14	-			_	-		-	-	-	- 14	- 1	- 14	-		_	_	-		1.1	-	_
Intenisity limitation 50 ns double batch	•					— ·																					
Intensity limitation single bunch 50 ns like	•		_								_		_		_		_			_	_					_	
Injection 3+3 instead of 4+2	۲										_		_			_	_										
42 bunches scheme	•		_				-			_	_		_				_										
75 ns double batch beam	۲										_		_														
Magnetic element tests	•				-	-	-			_			-	-	_	-	-	-	_		_	_	-				_
Use of low energy orbit correctors	•			1	<u> </u>		_				_		_				_							_			
Use of DHZ15-60 at injection	•	_		[_	_		_			_	_										
Test QLOW at 2 GeV	•	_		[_		_				_										
Test SKEW at 2 GeV	•	_	_	[_		_				_				_						
PFW use to control tune and chorma	•	_																									
Measure stray field of MU42 at 2 GeV	•										_	-	_		_	_	_	_	_	_						_	
Batch compression scheme	•												-			-	_							_	_		
Injection $h = 8$ beam in $h = 9$	•				E						_		7	_		_	_							_			
RF gymn. h=9 -> h=21	•				_	_				_	_							_		_				_			

MD resonance studies on injection flat bottom

Measurement to determine the best injection working point and dangerous resonances.

Today WP (LHC50): Qx=0.21 Qy=0.23

Measurements @ 2 GeV

From E. Benedetto

Next steps for resonance studies

Measurement to be finalized without PFW/F8L

- -measurements done with and w/o Landau octupoles
- -measurements with octupoles useful for Headtail cure

Measurement with PFW/F8L

- -needed to access the lower left angle of the tune diagram
- -high order multipoles would excite high order resonances
- -three-current working point preferred to minimize the octupolar component (no matrix for that)

Simulations

- -PTC-ORBIT implemented for the PS
- -No results yet on space-charge but only for single-particle optics

Acceleration to 2 GeV on h = 7 + triple split

Injection at 1.4 GeV identical to LHC25ns (but only one bunch) Acceleration to 2 GeV with phase and radial loop, but without stable phase programme \rightarrow OK

First test of triple splitting at 2 GeV using copy of voltage programmes for 1.4 GeV successful

Straight-forward to establish triple splitting (forward and return phase adjustments, all PPM)
No problem with adiabaticity, even though fs_{1.4GeV}/fs_{.2GeV} = 1.5

수수 운 순 🧳 🕱																													
GANTT Project		Apri	2011		N	May 201	1		_	June 2	011	_		July 2	011			Aug	just 2	011		s	epterr	nber 2	011	0	Octob	er 201	1
Name	Priority	14	15	16 17	1	18 19	20	0 21	22	2 23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41 4	12
Beam Dynamics (Transverse) MDs	•		-		-	_	-	_	-	-	-	+	_	-	-	-	-	-	-	-	-	-	-	_			_		_
Working point optimisation	•		-																										
Control Chromaticity at 2 GeV	•							Ę				-]											
Headtail at 2 GeV	•							1				-																	
Space Charge at 2 GeV	•																												
Electron cloud studies	•																												
Optics model (beta beating)	•																												
Impedance localisation via optics measurements	•																												
Optics measurement injection line	•																												
FT extraction at higher energy	•																												
Matching mesurements (turn-by-turn)	•																												
Transverse damper commissioning	•											-																	
Beam Dynamics (Longitudinal MDs)	•				-	_	-	_	-	-	-	-	-	-	-	-	-	•											
h = 7 acceleration	•																												
Verification of triple splitting at 2 GeV	•			Ē	-																								
Use of all 80 MHz for final phase rotation (Joined MD with SPS)	•																												
Study of kick voltage applied by C86/96 via CB-feedback	•	~]											
General performance	•				-	-	-	_	-	-	-	-		-	-	-	-	-	-	-	-	-	-	_	-	-	-		
50 ns double batch beam	•				-	-		-	-	-		-	-		-	-			-		-			-		-	-	-	_
Intenisity limitation 50 ns double batch	•					<u> </u>	_																						
Intensity limitation single bunch 50 ns like	•											-																	
Injection 3+3 instead of 4+2	•																												
42 bunches scheme	•																												
75 ns double batch beam	•																							_					
Magnetic element tests				÷																					-	-	-	-	_
Use of low energy orbit correctors	•			È		•																							
Use of DHZ15-60 at injection	•						_																						
Test QLOW at 2 GeV	•																												
Test SKEW at 2 GeV	•																												
PFW use to control tune and chorma	•																												
Measure stray field of MU42 at 2 GeV	•											-																	
Batch compression scheme	•					_												•											
Injection $h = 8$ beam in $h = 9$	•				E			<u> </u>					_ _																
RF gymn. h=9 -> h=21													È																

21

Apart from calculations, test in the PS machine proved that the 3 kW per kicker plate TFB setup is just adapted to the most demanding constraint in terms of injection damping time at 1.4 GeV (3 mm in 50 us for the LHC pilot beam)

Existing system commissioning should take place in 2011 run (currently not operational). Commissioning delayed to September

To obtain the same damping rate at 2 GeV the required power need to be multiplied by 1.7

3 kW amplifier for 1.4 GeV \rightarrow 5.1 kW amplifiers at 2 GeV

There is possibility that adding another kicker would be best suited... with increased costs

The present bandwidth is 23 MHz.

It is likely that 50 MHz can be reached with a new design (if required) \rightarrow is this enough with the extraction bunching at 40 and 80 MHz and its related electron cloud effect???

- Longitudinal plane: no limitations at transition crossing expected for (beyond) ultimate beams. Peak current only
 allows an estimation, no direct scaling.
- No problem up to 2 10¹¹ ppb (at PS ej.) during ultimate LHC25 tests (good for crossing transition with up to 4 · 10¹¹ ppb at ej. v IC50).
- Peak current of ultimate beams below present limitations (with e.g. TOF or AD beams).

Beam	Int. [10 ¹¹ ppb] at ejection	Intensity [10 ¹¹ ppb]	Long. emittance ε _l [eVs]	Pk. current at γ _{tr} [A]
LHC25, nominal	1.3	5.2	0.65	8.4
LHC25, ultimate	2.1	8.4	0.65	14
LHC50, nominal	1.3	2.6	0.65	4.2
LHC50, beyond ult.	3.0	6.0	0.65	9.7
SFTPRO/CNGS		17	1.4	15
AD		40	2.3	23
TOF		89	2.6	40

The TMCI instability observed on the TOF beam, and causing vertical losses, has a threshold beyond the more-than-ultimate LHC beam, stable for ~2 x 10¹² ppb (2010 results). Further studies will be done. Might cause ε(x,y) blow-up. Transverse emittance blow-up observed during 2010 tests with ultimate beam.

23

Sources of longitudinal beam parameter degradation

Transient beam loading causes relative intensity errors of up to 20% (± 10%) per splitting

- Pattern well understood from RF manipulations.
- Distributed problem since all the RF systems are used for splitting, i.e. contributed to the final spread.
- Bunch length and longitudinal emittance also affected with consequences for the SPS.

Coupled bunch instability observed during acceleration and at flat top, longitudinal emittance blow-up:

Mode spectrum very similar for the same average longitudinal density (25 ns or 50 ns) ~ N/ ϵ l .

Very different mode spectra during acceleration and on the flat-top depending on bunch spacing (25 ns or 50 ns). \rightarrow Impedance change of 10 MHz cavities due to gap relay closing.

RF Upgrades within PS-LIU

2011/2012: Study phase for RF

- MD studies and measurements on equipment
- Check feasibility and benefits of upgrade ideas
- Prioritise

Low-level RF:

- Equip high frequency cavities with 1-turn delay feedbacks, reducing transient beam-loading
- Improve coupled-bunch feedback for better longitudinal stability (started before PS-LIU)
- Man-power intensive

High-power RF:

- Improved feedback amplifiers closer to cavities?
- Possibility of more RF voltage and power per cavity?
- Expensive equipment with significant man-power involved

Planning for 2011-2014

Foreseeable studies and upgrades:

Item	Cost [kCHF]	Remark	
Longitudinal instability studies	60	Improve measurement set-up	٦
1-Turn feedback 40 MHz	80	Beam stability during acceleration	e
1-Turn feedback 80 MHz	80	Beam stability during acceleration	Low-lev
1-Turn feedback 20 MHz	80	Not clear if needed	
Phase control loops 10/20 MHz	25	Study benefits first	
Study benefit of improved direct FBs	50	Required for later decisions	Light
Modifications and tests, FB amplifiers	50	Further needs depend on study	
→ RF upgrades within PS-LIU aim at and reduction of transient beam load → Essentially independent from 1.4 C	improvi ling GeV or 2	ng longitudinal beam stability GeV injection energy	

26

Flat top (transverse)

Electron Cloud: electron cloud signal is observed after the second double splitting, with little conditioning effect over 1 year run.

Electron cloud was observed but not clear yet if any deleterious effect on the beam. Might become more critical with higher brillance.

New studies in 2011 since direct impact on the time available for the last RF manipulation. Starting in september

- Transverse instabilities at flat top observed in 2001, 2004 and again 2006.
- Probably related to electron cloud (why mainly horizontal and why not cured by chromaticity).
- Coupled bunch or single bunch effect?
- Threshold of 4.5×10^{10} ppb for a bunch length of 10 ns.

If solution like coating will be needed \rightarrow MU removal \rightarrow staging the intervention or LS2

CERI

27

Shielding on top of SMH16 found too thin for the high intensity operation (MTE or not

Proposal to increase the thickness (yellow part)

Alternative schemes: batch compression

Batch compression in the PS to increase brightness after acceleration to a suitable energy

Abandon factor 7 in PS harmonics to:(i) use all four PSB rings (with single batch transfer)(ii) use batch compression to increase brightness

- Fill as much as possible of the PS circumference at injection
- Batch compression after first acceleration to an appropriate energy

Reduced number of bunches per PS cycle \rightarrow Higher intensity per bunch and, thus, brightness

- Difficult operation due to many RF harmonics changes
- MDs and studies in 2011 (see next slide)
- Could be use to produce beams for tests in the SPS

LIS meeting 20/06/2011

See C. Carli, Chamonix 2011

25/50 ns bunch spacing without triple splitting

 $h2+1_{\text{PSB}} \rightarrow h9_{\text{PS}} \text{ and } h = 9 \rightarrow 10 \rightarrow 20 \rightarrow 21$

Voltage programs:

- ✓ Proof-of-principle OK
 - 2 GeV: ε_I = 1.2 eVs max. (0.8 @ 1.4 GeV)

Tomoscope _ X File View Option Control Help Tomoscope MD 9 May 20 12:49:15 2011 C Timing 300 Delta Turns 550 N Traces 100 Time Span 120,42 ms 250 500 750 1000 1250 1500 1750 2000 ns H. Scale 2 💷 ns/pt N Samples 1000 💷 pts/trace Delay 116 ns V. Scale 0.5 💷 V/div Pure h = 9Update Unfreeze Freeze Tomogram

Pure *h* = 21

- \rightarrow But, several technical issues + developments to make it operational:
 - Need injection bucket selector for h = 9 (+ 2nd inj.?) \rightarrow new development
 - Switching to h = 9 local oscillators must be correctly implemented
 - Need to switch to h = 21 phase loop using real cavity return before acc. → modifications to LHC beam control for more phase loop harmonics
 - Cavity return sum h = 20?

Works foreseen for LS1: magnets (tunnel work)

- •Low energy magnet replacement:
 - Orbit correctors
 - Trim quadrupoles
 - Skew quadrupoles
- •Definitive list of magnets to be replaced: pending results of MDs
- •Magnet exchanges not in conflict with LHC interventions in terms of resources
- •Possible exchange of main bus-bars in conflict with the interventions
- •Work could be postponed during LS2

Works foreseen for LS1: civil

R.te Goward: increase of the shielding should be done during the LS1 to avoid interference with the LS2 upgrade work: route is the only access to the center of the ring.

Shielding on top of SMH16: study should be started this year, not clear if can be done during LS1

Not many activities in the tunnel foreseen during LS1 because:

- Upgrade studies recently started: studies still to be done to decide equipment/solution to be applied (eg. LL/HL RF)
- the technical design of many components remains to be made, even if choice already done (eg. Injection elements will be ready only for LS2)
- Many activities are outside the tunnel, like: renovation/consolidation of power converters

Most of activities concentrated during LS2.

- Beam parameters for the LIU defined as exclusion plots based on current operation and educated-guess extrapolations
- Short for the 25 ns, to be discussed end of this week with HL-LHC
- MDs ongoing
 - difficult due to sometimes lack of beam time, instrumentations (improved!)
 - limited resources: new comers, operators, + Elena (synergy of some studies with Beta-Beam)
- Simulation studies
 - Space charge: first tests with PTC-ORBIT seems to be encouraging, technically the code works, physics results to be discussed
- In general, project suffering due to lack of resources:
 - within the group in particular for the collective effect studies. Solution under investigation (outsourcing)
 - for the MDs, relying on the operators, Elena, Gersende, Sandra (none of them in principle should work on PS-LIU)
 - for the BI specifications
 - looking for help to follow-up the organization-managing of the project

Linac4 connection to the PSB

- High interest of connecting Linac4 to the PSB during LS1:
 - Staged upgrade spread between LS1 and LS2 (shorter LS2 ?)
 - Timely termination of the Linac4 project
- Reasonable scenario (with 20 months LHC shutdown) if LHC stops in May 2013
 - Possibility to run the injectors until the end of 2013
 - No beam for physics before early 2015 \Rightarrow

TE	ENTATIVE SCHEDULE - CONNECTION LINAC4 DURING LONG SHUT-DOWN 2013/2014 - version B 06.04.11																									
																								-	D .0	Meetonov
																COMMENTS	. vretenar									
1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12			
				Lin	ac4	l co	mm	issi	onir	ng															L4 commissioning original schedule	
															Re	liab	ility	rur	1						Reliability run 5 months	
																		Tra	nsf	er l	ine d	com	mis	sior	ning	
																	PSE	3 m	odif	iati	ias					
																				PS	<mark>B co</mark>	mm	<mark>i</mark> ssio	nir	ng	
																							PS/	<mark>/</mark> SPS	S commissioning	
	LHC Shut-down (20 months beam-to-beam)																									

 Scenario based on LHC stop at end 2012 is more risky / not recommended: when physics resumes after 20 months interruption, users will expect similar performance § reliability than before the shutdown... LIS meeting 20/06/2011 36

Single-batch LHC beam with 50 ns spacing

LHC beam with 25 ns spacing, double-batch

PS longitudinal: batch compression (2/2)

Simulation (C. Carli)

MD result at 2 GeV (H. Damerau, S. Hancock)

RF gymnastics OK up to intermediate energy

Significant effort required to reach 26 GeV and make beam available for the SPS (RF preparation § beam

LIS and puiston 20/06/29 Need for precise measurement of transverse emittances before continuing

39